az United States Patent

Pelosi

US012242946B1

a0y Patent No.: US 12,242,946 B1
45) Date of Patent: Mar. 4, 2025

(54) INTEGER GATE LOGIC ARTIFICIAL
NEURAL NETWORK

(71) Applicant: Michael J. Pelosi, Clarksville, TX (US)

(72) Inventor: Michael J. Pelosi, Clarksville, TX (US)

(73) Assignee: MLIGLON, Inc., Clarksville, TX (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 18/776,350

(22) Filed: Jul. 18, 2024

Related U.S. Application Data
(60) Provisional application No. 63/667,022, filed on Jul.

2,2024.
(51) Int.CL
GOG6N 3/063 (2023.01)
GOG6N 3/0442 (2023.01)
GOG6N 3/048 (2023.01)
GOG6N 3/082 (2023.01)
(52) US. CL
CPC ... GOG6N 3/0442 (2023.01); GO6N 3/048

(2023.01); GO6N 3/063 (2013.01); GO6N
3/082 (2013.01)
(58) Field of Classification Search
CpPC ... GOO6N 3/0442; GO6N 3/063; GO6N 3/082
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
10,228,911 B2 3/2019 Henry et al.

10,540,588 B2 1/2020 Burger et al.
10,733,794 B2 8/2020 He et al.

10,867,247 Bl* 12/2020 Teig ...ocooevvvvrernuenne GOG6N 3/084
10,949,736 B2 3/2021 Deisher et al.
11,010,516 B2 5/2021 Sikka et al.
11,315,012 B2 4/2022 Anderson et al.
11,335,387 B2 5/2022 Shan et al.
11,386,307 B2 7/2022 Batchelor et al.
11,669,585 B2 6/2023 del Mundo et al.
12,026,219 B2 7/2024 Storm et al.
2016/0003481 Al 1/2016 Taniguchi et al.
2018/0144240 Al 5/2018 Garbin et al.

(Continued)

OTHER PUBLICATIONS

Tabaza et al., “Hysteresis Modeling of Impact Dynamics Using
Attificial Neural Network,” in 37 J. Mechanics 333-38 (2021).
(Year: 2021).*

(Continued)

Primary Examiner — Ryan C Vaughn
(74) Attorney, Agent, or Firm — Hall Estill Law Firm

(57) ABSTRACT

Apparatus and method for implementing an Artificial Neural
Network (ANN) section which eliminates the need for
backpropagation during training. The ANN section has a
plurality of integer gate logic (IGL) nodes respectively
arranged into an input layer, an output layer, and at least one
hidden layer. Each node has multiple inputs and a single
output, and uses a non-differentiable activation function to
emulate Boolean logic functions (including XOR), near-
Boolean functions, and unknown functions, based on one or
more selectable weight values. A chain isolation optimiza-
tion process is used to select and isolate each node during
training to assess the impact of the different weight param-
eters on the output. Enhanced error functions, batch pro-
cessing scheduling, and random node selection techniques
can be used during training. The nodes can be singly
connected, or arranged into convolutional filters or localized
fully interconnected layers.

30 Claims, 21 Drawing Sheets

IGL-ANN
130~\‘
’/“ 144 ’/—148 ’/'“146
INPUT LAYER 142 HIDDEN LAYERS OUTPUT LAYER
140 O//
X Y
O/ T~
Q 150
FEEDFORWARD f‘

152

CHAIN ISOLATION OPTIMIZATION

Y

US 12,242,946 Bl
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2019/0114531 Al
2019/0332944 Al
2019/0378210 Al
2020/0097818 Al
2020/0364508 Al
2020/0380369 Al

4/2019 Torkamani et al.

10/2019 Bai et al.
12/2019 Merrill et al.

3/2020 Li et al.

11/2020 Gurel et al.

12/2020 Case et al.
2021/0142177 Al 5/2021 Mallya et al.
2022/0237452 Al* 7/2022 Marukame GO6N 3/08
2023/0351144 A1* 11/2023 Sudarsanan ... GO6N 3/063
2024/0087175 Al* 3/2024 Huang GO6N 3/0464
2024/0212328 Al 6/2024 Loo et al.

OTHER PUBLICATIONS

Le, Introduction to Micromechanics (2010). (Year: 2010).*
Sneha, The 16 Boolean Logic Functions of Two-Input Systems,
https://’www.allaboutcircuits.com/technical -articles/16-boolean-logic-
functions-of-2-input-system/ (2020). (Year: 2020).*

Li et al, “Urban Flood Mapping with an Active Self-Learning
Convolutional Neural Network Based on TerraSAR-X Intensity and
Interferometric Coherence,” in 152 ISPRS J. Photogrammetry and
Remote Sensing 178-91 (2019). (Year: 2019).*

Szegedy, C., et al.; “Going deeper with convolutions” (2014) 12
pages.

Toffe, S., et al.; “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”; (2015) 11 pages.
Kingma, D.P, et al.; Adam: A Method for Stochastic Optimization;
ICLR Conference (2015) 15 pages.

Wang, G.; “A Novel Neural Network Model Specified for Repre-
senting Logical Relations™; (2017) 10 pages.

Yang, J., et al,; “Robustness of classification ability of spiking
neural networks”; (2018) 7 pages.

Zhang, G., et al.; “Which Algorithmic Choices Matter at Which
Batch Sizes? Insights From a Noisy Quadratic Model”; (2019) 17
pages.

Chen, T, et al.; “A Simple Framework for Contrastive Learning of
Visual Representations”; (2020) 20 pages.

Wu, Y, et al.; “Autoformalization with Large Language Models”;
(2022) 44 pages.

Wu, Y., et al.; “Memorizing Transformers”; ICLR (2022) 19 pages.
Ahmad, N.; “Correlations Are Ruining Your Gradient Descent”;
(2024) 13 pages.

Crulis, B., et al.; “An experimental comparative study of backpropaga-
tion and alternatives for training binary neural networks for image
classification”; (2024) 17 pages.

Pal, D., et al.; “Modeling Linear and Non-linear Layers: An MILP
Approach Towards Finding Differential and Impossible Differential
Propagations”; (2024) 42 pages.

Pirillo, A., et al.; “NITRO-D: Native Integer-only Training of Deep
Convolutional Neural Networks”; (2024) 15 pages.
Terres-Escudero, E.B., et al.; “On the Robustness of Fully-Spiking
Neural Networks in Open-World Scenarios using Forward-Only
Learning Algorithms”; (2024) 25 pages.

Triantafyllou, N., et al.; “Deep learning enhanced mixed integer
optimization: Learning to reduce model dimensionality”; Depart-
ment of Chemical Engineering, Imperial College London (2024) 47
pages.

Bland, Richard “Learning XOR: Exploring the Space of a Classic
Problem” University of Stirling, Department of Computing Science
and Mathematics: Computing Science Technical Report, Jun. 1998
tps://cs.stir.ac.uk/~kit/techreps/pdf/TR 148.pdf.

Lee, Dong-Hyun; Zhang, Saizheng; Fischer, Asja; Bengio, Yoshua
“Difference Target Propagation” In: Appice, A., Rodrigues, P,
Santos Costa, V., Soares, C., Gama, J., Jorge, A. (eds) Machine
Learning and Knowledge Discovery in Databases. ECML PKDD
2015. Lecture Notes in Computer Science(), vol. 9284. Springer,
Cham. https://doi.org/10.1007/978-3-319-23528-8 31; Dec. 2014.
https://arxiv.org/pdf/1412.7525.

Dettmers, Tim “8-Bit Approximations for Parallelism in Deep
Learning” International Conference on Learning Representations
(ICLR); Nov. 2015. https://arxiv.org/pdf/1511.04561.

Jaderberg, Max; Czarnecki, Wojciech Marian; Osindero, Simon;
Vinyals, Oriol; Graves, Alex; Silver, David; Kavukcuoglu, Koray
“Decoupled Neural Interfaces Using Synthetic Gradients” Proceed-
ings of the 34th International Conference on Machine Learning,
Sydney, Australia, PMLR70, 2017; Jul. 3, 2017 https://arxiv.org/pdf/
1608.05343.

Choromanska, Anna; Cowen, Benjamin; Kumaravel, Sadhana; Luss,
Ronny; Rigotti, Mattia; Rish, Irina; Kingsbury, Brian; DiAchille,
Paolo; Gurev, Viatcheslav; Tejwani, Ravi; and Bouneffouf, Djallel
“Beyond Backprop: Online Alternating Minimization with Auxil-
iary Variables” Proceedings of the 36th International Conference on
Machine Learning, PMLR 97:1193-1202; Jun. 2019. https://arxiv.
org/pdf/1806.09077.

Ma, Wan-Duo Kurt; Lewis, J.P .; and Kleijn, W. Bastiaan “The
HSIC Bottleneck: Deep Learning Without Back-Propagation” The
Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-
20); Aug. 2019. https://arxiv.org/pdf/1908.01580v1.

Xu, Feiyu; Uszkoreit, Hans; Du, Yangzhou; Fan, Wei; Zhao, Dongyan;
and Zhu, Jun “Explainable Al: A Brief Survey on History Research
Areas, Approaches and Challenges” In: Tang, J., Kan, MY., Zhao,
D, Li, S., Zan, H. (eds) Natural Language Processing and Chinese
Computing. NLPCC 2019. Lecture Notes in Computer Science, vol.
11839. Springer, Cham. https://doi.org/10.1007/978-3-030-32236-6
51 hi tps://www.researchgate.net/publication/33613105 1 Explainable
Al A Brief Survey on History Research Areas Approaches and
Challenges.

* cited by examiner

US 12,242,946 Bl

Sheet 1 of 21

Mar. 4, 2025

U.S. Patent

FIG. 1
Existing Art

! o

OUTPUT(S)

104

100
/

ARTIFICIAL NEURAL
NETWORK (ANN)

g >
102

INPUT(S)

OUTPUT LAYER

’/“120

HIDDEN LAYERS

114

INPUT LAYER

%

h%.%k&
Q

N
—
-

R
«//,ﬁ

/

(2

M
{

:
%

/

0%
A
o\o

f

7
o

WN

/

()
»

,
N ,@.

(»w%w%&»v

(XX

7\
oge
NI

CXRKKLEY
e sy
FRIRING

I

g

Y,

.
o

<), A‘
.w..@/,

AT/A\
'\\\Q\AQ

SO\
BN

FEEDFORWARD

124
FIG. 2
Existing Art

BACKPROPAGATION

OUTPUT(S)

>

/130

INTEGER GATE LOGIC (IGL)
ANN

INPUT(S)

g >
132

FIG. 3

134

U.S. Patent Mar. 4, 2025 Sheet 2 of 21 US 12,242,946 B1

a0 IGL-ANN
Y 144 148 146
INPUT LAYER 14 HIDDEN LAYERS OUTPUT LAYER
140 A O
X () Y
O 150
FEEDFORWARD f
CHAIN ISOLATION OPTIMIZATION C 152
140 FIG. 4
) IGL-NODE
e S o e - - - - - - - = i
L] INPUT W1 W2 B cP !
| | BUFFERS | | 158 160 162 164 !
| DATA 1
[l 154 WS GENERATION STORE | 1
! 166 ;
|| ouTPUT ,
| | BUFFER LINEAR LOGIC OFFSET ACTIVATION 170 |
a FUNCTION (LLO-AF) i
: 156 168 i

U.S. Patent Mar. 4, 2025 Sheet 3 of 21 US 12,242,946 B1
1728 —AT4A —176A ’/“1 40
W1 | CP
182 184
WS
8~ LLO-AF
1728 1748 1768
W2 —» CP 180
WS = (XT*W1*CP) + (X2*W2*CP) + B
FIG. 6 Y1 = LLO-AF(WS)
204 .
LLO-AF % ’/fzoo
P— 200G
200A 2008
200D
200E /202
T ! 1 ! : I
2P P 0 p 2P 3P 4P
| W1 206
l (-2P TO +2P) !
| w2 F~207
! (-2P TO +2P) '
| B 208
! (-1P TO +3P) ’
209
5P MAXIMUM RANGE FOR WS / +7P
FIG. 7 (-5P TO +7P) Y

U.S. Patent Mar. 4, 2025 Sheet 4 of 21 US 12,242,946 B1

NORMALIZED” GATE LOGIC EMULATION SETTINGS

GATE TYPE BIAS (B) WEIGHT (W1) | WEIGHT (W2)

NULL (ALWAYS OFF) 0 0 0
NOR 1 -1 -1

XA 0 1 -1
XB 0 -1 1
AND -1 1 1

NOTB 1 0 1
XOR 0 1 1
B 0 0 1

NOTA 1 -1 0

A 0 1 0
NXOR 1 1 1

NAND 3 -2 2

OR -1 2 2

NXB 1 2 2

NXA 1 2 2

ALL (ALWAYS ON) 1 0 0

WEIGHTED SUM 0 0.5 0.5

* ALL VALUES ARE MULTIPLIED BY P FIG. 7A

NON-DIFFERENTIABLE LINEAR LOGIC OFFSET ACTIVATION FUNCTION

MULTIPLE LOCAL MAXIMUMS

214A
210
S\ 216B THIRD 7

/ vl /
FRST /7 p16a N | GRADIENT,

GRADIENT ,~~_~ v /
/ \ JARN
/ b /7 T 160
D19A / SECOND \\ /
/
, GRADIENT Y, 7
\‘/ \ /

MULTIPLE LOCAL MINIMUMS
FIG. 8A

U.S. Patent Mar. 4, 2025 Sheet 5 of 21

US 12,242,946 Bl

210A
’//" '/'2108
'l
r
'l
'0
'l
"'
P 2P 3P 4P P 2P 3P 4p
FIG. 8B FIG. 8C
220
y
ALL REMAINING NODES IN THE ARRAY
ARE UNAFFECTED BY PARAMETER
ADJUSTMENTS TO NODE N
SAME

SAME INPUT AS
BEFORE

SAME INPUT AS
INPUT AS BEFORE
BEFORE X1

X1
SAME

INPUT AS

SAME BEFORE
INPUT AS

BEFORE

X1

222

THE ONLY NODES THAT
REQUIRE RECALCULATION
LIE ALONG THE CHAIN PATH

224 FROMNODESNTOY

FIG. 9

U.S. Patent Mar. 4, 2025 Sheet 6 of 21 US 12,242,946 B1

300
IGL-ANN
TRAINING

L /302

INITIALIZE NETWORK

‘ /’304

APPLY TRAINING DATA SET

i /306

CALCULATE
INITIAL ERROR TERM (YE1)

‘ /308

SELECT FIRST NODE FOR
PARAMETRIC ADJUSTMENT

i /310

VARY PARAMETERS W1, W2
AND B FOR SELECTED NODE
AND RECALCULATE

DOWNSTREAM CHAIN A
NODES TO OBTAIN UPDATED
ERROR TERM YE(NEW)

SELECT NEXT NODE FOR
PARAMETRIC ADJUSTMENT
N
314 316
END OF BATCH? @
Y
320

END

FIG. 10

U.S. Patent Mar. 4, 2025 Sheet 7 of 21 US 12,242,946 B1

332
334 30
X Y
o
DUMMY NODE
(0 OR 1)
336

LAYER 1 2 3 4 5 6
NODES 28 14 78) 4 2 1

US 12,242,946 Bl

Sheet 8 of 21

Mar. 4, 2025

U.S. Patent

Y

/,,342
IGL NODE
(3 INPUT)

X1 ——p

- Y X2 ————p

X3 el

340
o
IGL NODE
(2 INPUT)

X1 ——»

X2 —»

FIG. 12B

FIG. 12A

FIG. 13A

344
/,w

IGL-NODE
CONVOLUTIONAL FILTERS

<t
w0
(327

L MV VA VAV

r///’&ﬂ

Q
¥l
(30}

“

NV WA

ARV

R R

Auunt

A VAV A WA
AN NN
A ANV
ARV VAV VAV VA VA VA W W WA
NAVAVAVA VAV VA VA VA W WA WA W W
AV VAVVAV VAV VA VA

344C

(A

////

/

VAN

/////// NAVAVAVAVA

///////i///////
VANMA DAVA F ANV
VAV A VA VA VA
ANAVAVANAVA VAV VA VA WA WA WA WA
AN ANV VA
VALVAAMAVAVAVVAV AV VAN

FIG. 13B

U.S. Patent Mar. 4, 2025 Sheet 9 of 21 US 12,242,946 B1

1D ARRAY 2D ARRAY
362 ,—360A 3608
364 366 -
FIG. 14A FIG. 14B
2D ARRAY
370 372A R
, 374A 360C
i R .,—-—- O 376 4
T O 0 O © . | O 378
Q
~{)
L L] L] n ’
= © ‘.(0
o d U O 3748 FIG. 14C
3728
60D
3D ARRAY >
380 382 384

, , & 386
9 [-]fé
M [V L VAN 1 ey Z-AXIS

X-AXIS Y-AXIS NODES

3DDI/§\\‘TP/§J ! NODES NODES COMBINED

COMBINED COMBINED
388 FIG. 14D
4D ARRAY

)(,—SGOE
396 398
e ——

Z-AXIS T-AXIS

4D lNP;?-" DATA FlG 1 4E

U.S. Patent

SAME
TRAINING
DATA SET

414

y

INPUT
CONTROL
410

el L AYER

- LAYER

L——» LAYER

e~ LAYER

Mar. 4,2025 Sheet 10 of 21 US 12,242,946 B1
400
IGL-ANN 1
402A A16A
INPUT | HiDDEN | OUTPUT 1
LAYER ioi
LAYERS | (0P :
404A 406A NODE M
IGL-ANN 2 4168
4028
0
INPUT | HiDDEN | OUTPUT 1
LAYER 0
LAYERS | (GOER o
4048 4068 NoDE I
OUTPUT
CONTROL
412
IGL-ANN 3 L
402C
INPUT | HipDEN | OUTPUT 0
LAYER 0
LAYERS
404C 406C (NODE) 1
404C 406C 408C 0
416C
IGL-ANN 4
402D 418D
INPUT | HiDDEN | OUTPUT Iot
LAYER 0
Lavers | (OER :
404D 406D o lﬁJ

FIG. 156

U.S. Patent Mar. 4, 2025 Sheet 11 of 21 US 12,242,946 B1
420
N 422 424
i -
CONVENTIONAL ANN IGL-ANN
(FRONT END) > (BACK END)
430—]
432
i
NVENTIONAL ANN 434
CO —
IGL-ANN
(EMBEDDED) FIG. 1
440
Y 442 444
/'_ 446 /"
CLIENT SERVER
CPU MEM CPU MEM
[1 LY A\
448 450 452 454
462
INPUT CONTROL
464
! ! ' v
PROCESSOR 1 | | PROCESSOR 2 | | PROCESSOR 3 |- » :| PROCESSOR N
466
v
OUTPUT CONTROL FIG. 19A

U.S. Patent

|
476 f
\ INPUTI
|
!
—
MNIST |
DATA » |
SET .
|
|
|
A SN

Mar. 4, 2025

Sheet 12 of 21

US 12,242,946 Bl

472 A/ 478 /480
L —1 CONTL .
|
Loutput | ©PRETC
| 22 CORE
| OUTPUT | POOL
a
. CONTL o
a
| OUTPUT |
I CONTL - CORE TO NODE
; ASSIGNMENTS
L QUTPUT | /482
|_CNTL |
: SCHEDULING
+QUTEUT MANAGER
L CONTL
' QUEUE DATA
: QUTPUT | FOR NEXT NODE
. CNTL | --484
i T | Lees
{ OUTPUT EXISTING ! |
| oNTL | NODE 1| SSD1 ||
s >| PARAMETERS | :
{ OUTPUT | | ssp2 | |
' i
|_CNTL_ 1 UPDATED | |
NODE i SSD 3 |
z
QUTPUT o} pARAMETERS | x
{ CNTL > |
| > ‘ *
| OUTPUT | ; . :
}
| 4g6—71 | s
e e e e o — 3
\J

FIG. 19B

U.S. Patent Mar. 4, 2025 Sheet 13 of 21 US 12,242,946 B1

|
COMPUTED 490 |
ERROR (CE) \ |
|
|
|
|
|
492 :
|
|
H ¥]
0 0.40 0.45 1.0
RAW ERROR (RE) = G 20
NODE PRUNING SEQUENCE ’/’500
502 504 506 508
- - - r
IDENTIFY ZERO OUT PERFORM CHAIN
NULL Aggg?:n%;a CHAINED ISOLATION
LOCATIONS o 500 2= 1=+ DOWN- |- OPTIMIZATION ON
IN TRAINING NODES STREAM REMAINING
DATA SET NODES NODES
BATCH LEARNING SCHEDULING ’/“510
512 514 516 518
- - - T
FIRST EVALUATE DEVELOP
BAGE LOSS SCHEDULING SECOND
FUNCTION, PROFILE TO PASS USING
USING | > .
TRAINING IDENTIFY ADVANCE SCHEDULING
DATA SET DIFFICULT DIFFICULT PROFILE
SAMPLES SAMPLES

FIG. 22

U.S. Patent Mar. 4, 2025 Sheet 14 of 21 US 12,242,946 B1

522 524 526 528 520
T - - Ty

FULLY

NORMALLY
INPUT INTER- OUTPUT
LAYER [connecTeD [CONNECTED 7 \ven

LAYERS (FlLs) LAYERS F l G . 23A
’/'—530

DOWNSTREAM (D)

LAYER N+1
——=—- 534

] b

FULLY INTERCONNECTED LAYERS

LAYER N

538

i

CHORIO

SN/
P

(3)

FIG. 23B

-
l
|
|
|

U.S. Patent

Mar. 4, 2025 S

heet 15 of 21

US 12,242,946 Bl

SOFTWARE MODELING AND VISUALIZATION TOOL -~ 540
f{
F—"""=™"="=™"=™"="""™"=™"=m"™"=""" e]
| 542 544 546
[MODELING CONTROLLER VIEWER |
| 548 560 1566
| USERIF | ANALYSIS | osApPl H
| 550 562 568
| PARAMS SCHEDULER - COLOR MGR |-
[552 564 1570
|| | MODEL GEN |- BATCH MGR || DISPLAY ~/§/
|
L-,r-,-,_-,“-n,,,-,“-,“-_,,_-,w-”,l
556 558 1
| P - - |
| IGL-ANN TRAINING TEST !
i | NODE DATA DATA DATA |
{
{
B FIG. 24
CHAIN ISOLATION OPTIMIZATION SEQUENCE ,— 580
582 584 586 588
IDENTIFY CONFIGURE SELECT BATCH SIZE, INITIATE
TRAINING | | IGL-ANN | | PERCENT (%)NODESTO | | FIRST
DATA TYPE, (LAYERS, TEST, NODE DISTRIBUTION, BATCH
SIZE NODES) OTHER PARAMS TESTING
l 59 592 5% 5%
RUN X (EX. 35) UPDATE
Rg’;‘igg’y | DIFFERENT PARAM | | PARAMS THAT | Sgiéi?
ODE COMBOS ON EACH | ™| IMPROVE LOSS BATCH
TEST SAMPLE FUNCTION

A*

FIG. 25

U.S. Patent

Mar. 4, 2025 Sheet 16 of 21 US 12,242,946 B1
LAYER SIZE TOTAL NODES
LAYER 1 (INPUT) 112 X 56 6272
LAYER 2 56 X 56 3136
LAYER 3 56 X 28 1568
LAYER 4 28 X 28 784
LAYER 5 28X 14 392
LAYER 6 14 X 14 196
LAYER 7 14X 8 112
LAYER 8 8X8 64
LAYER 9 8 X4 32
LAYER 10 4X 4 16
LAYER 11 4X 2 8
LAYER 12 2X 2 4
LAYER 13 2X1 2
LAYER 14 1X 1 1
TOTAL NODES 12,587 FIG. 26A
»— 600
[TRAINING CHART =IEIX]
8.2M 582.1
M — 4215
220 602 606 {3212
1.1M
—240.9
B54M |-
~1180.6
27M |- 604
—{140.5
—{120.4
1 | 1 | 1 | | 1004
5 10 15 20 25 30 35 40
BATCH/TEST
[~ BATCH INIT ERROR | —@— BATCH END ERROR | —#— TRAINING SET ERROR]

FIG. 26B

US 12,242,946 Bl

Sheet 17 of 21

Mar. 4, 2025

U.S. Patent

Q9¢ 9Old

SSPON § S8PON 211
S9pOo
XY gXxX i mmﬂmmwm
L} dehe S8PON 91 . Jefe 7 Joke
FX¥ SSPON Z6¢
SOPON ¥ 0} Jhen ¥l X 82
¢XZ G Joke SOPON 2129
Z1 Jofe SBPON Z¢ 95 X ¢ilL
VX8 | J8Aen
$Opo
SOPON 2 6 Johe %N w_ %Nw £
LX¢ p
o sohe ¥ Johe
SOPON 961 SOPON 8961
SpON | SOpON 9 L X i 8C X 96
LX) 8X8 g Johe] 09¢zi
vl 1oke g Jahe abewy
Buiuies |

[<-1eN [eN - > |IREREEETN

198107 - £2€G8¢

[enjoy-A

PO

| 0962

sinding ejdwexy buiuel |

dVIN ALISNILINI 3NIVA INdLINO — (SFAON L89G CL/SHIAVT ¥L) NNV-19I

US 12,242,946 B1

Sheet 18 of 21

Mar. 4, 2025

U.S. Patent

V.Z 9Old

wng paiybiap
TV
VXN
XN
¥O
ANVN
HOXN
v
VLON
g
HOX
910N
anNv
ax
X
HON

INON
paunig
PBI0BULoOSI(]

UMOUNUF ;

JAON
L X
0L "W3AVT

SJAdON v
¢X¢
8 ¥IAV

S3AON 91
PXV
9 H3AV]

S3AON v9
8X8
¥ YAV

S3AON 961
12994
¢ H4AVY

S3AON ¢t

S3AONC

6 A=AV

S3AON 8
XV
L HIAVT

S3JON ¢¢€
7X8
G H3AVY]

8 X Vi
€ H3AV]

S3AON ¢6¢
¥l X 8¢
L "dAVT

"
23

'

ajepdn oy [_ Jiepdn

xIfail=]

uonezijensip spon yomeN ||

F1VLS TVILINI = dVYIN ONIGOONST 3dAL JLVO ~ (S3AON 618/SHIAV T 01) NNV-19I

US 12,242,946 Bl

Sheet 19 of 21

Mar. 4, 2025

d.¢ 9ld

UMOUNUL %

wng paiyBiom
v
VXN
XN
HO
aNVN
HOXN
A4
V10N
g
HOX
g10ON
aONY
ax
X
JON

ANON
paunid

P8I2BUL0OSI(]

S3AON 961

3AdON |
L XL
Ol "3AVT

S3AON ¥9

PLX Pl
Z H3IAVY

S3IAON ¥
ZX¢
8 d3AVT

S3AON 9}
19.9%

8X8
¥ HIAV]

9 HIAV

SIAON T
LX2
6 YAV

B -

S3AON 8
cXV
L HIAV

S=AdON ¢¢€
¥ X8
S H3IAV

SAAON ¢l i

S3AON 26€
¥ X 8¢
L H3AVT

8 X ¥l
€ HIAVY

atepdnoiny [[ayepdn |

uoneziensip epoN yomaN ||

xfe]=]

U.S. Patent

A
09 ONINIVHL ONIFINGA — dVIN ONIGOONT 3dAL F31vO —(S3AON 618/SHIAVT 01) NNV-191

U.S. Patent Mar. 4, 2025 Sheet 20 of 21 US 12,242,946 B1
+3pP
o
0, 0, +1
B ()
+2P
W2
-1P
2p W1 +2p 2P FIG. 28A
[) ®
° []
° o .
[]
+3P . e
® []
L °
®
° ° o
®
B . ° ® .
° ®
o ™S
(] ®
+2P
®
« . %, . w2
1P ® °
2P W1 +2p 2P FIG. 28B

U.S. Patent Mar. 4, 2025 Sheet 21 of 21 US 12,242,946 B1

»— 700
s 704 S~ 702 S 708

OUTPUT

SENSOR | . courmol
SYSTEM

FULLY TRAINED

SYSTEM

CONFIG > «—»] CONTROLLER

INPUTS

FIG. 29

US 12,242,946 Bl

1

INTEGER GATE LOGIC ARTIFICIAL
NEURAL NETWORK

RELATED APPLICATIONS

The present application makes a claim of domestic pri-
ority to U.S. Provisional Patent Application No. 63/667,022
filed Jul. 2, 2024, the contents of which are hereby incor-
porated by reference.

BACKGROUND

The so-called backpropagation (“backward propagation
of errors”) algorithm, as utilized for machine learning (ML)
in the context of artificial intelligence (Al), has remained
largely unchanged in implementation for the past 50 years.
Backpropagation is a technique used to train a feedforward
Artificial Neural Network (ANN) in which the gradient of an
observed loss function (error) with respect to the weights of
the network is estimated. The weights are incrementally
adjusted in an effort to reduce the observed error.

While a variety of backpropagation techniques have been
proposed, most involve the calculation or estimation of
partial derivatives using the so-called chain rule via gradient
descent beginning at the output and working backwards
through the network. The technique operates in a recursive
fashion in an attempt to solve for the optimum weights in the
system that minimize the loss function.

Backpropagation is computationally complex and
requires significant memory, computing, and energy
resources, as well as specialized and often expensive hard-
ware (e.g., GPUs, TPUs, supercomputers, etc.) for large
models. With the advent of deep learning and other
advanced techniques that potentially require billions or more
nodes and tens or hundreds of layers or more, backpropa-
gation will likely continue to be a limiting factor in efficient
ANN design, training and operation.

SUMMARY

Various embodiments of the present disclosure are gen-
erally directed to an apparatus and method for implementing
an ANN with Boolean logic gate emulation capabilities and
which eliminates the need for backpropagation during train-
ing.

Without limitation, some embodiments provide an ANN
section having a plurality of integer gate logic (IGL) nodes
respectively arranged into an input layer, an output layer,
and at least one hidden layer interconnected between the
respective input and output layers. Each node in the ANN
section is configured to emulate one or more Boolean logic
functions responsive to a magnitude of at least one select-
able weight value. Each non-output layer node further has a
single output connected to a total of one other node in a
downstream layer to facilitate training of the nodes using a
chain isolation optimization process without backpropaga-
tion.

These and other features and advantages of various
embodiments can be understood from a review of the
following detailed description in conjunction with the
accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a simplified functional block representation of an
Artificial Neural Network (ANN) in accordance with the
existing art.

—_

5

40

45

60

65

2

FIG. 2 shows an exemplary interconnection configuration
of'the ANN of FIG. 1 as a multilayer perceptron (MLP) array
in accordance with the existing art.

FIG. 3 is a corresponding simplified functional block
representation of an Integer Gate Logic (IGL) ANN con-
structed and operated in accordance with various embodi-
ments of the present disclosure.

FIG. 4 is an exemplary interconnection configuration of
the IGL-ANN of FIG. 3 in accordance with some embodi-
ments.

FIG. 5 is a functional block representation of each IGL
node in the IGL-ANN of FIGS. 3 and 4 in some embodi-
ments.

FIG. 6 is a logic diagram representation of the IGL node
of FIG. 5 in some embodiments.

FIG. 7 is a graphical representation of a linear logic output
(LLO) activation function of FIG. 6 in some embodiments.

FIG. 7A is a table of normalized gate logic emulation
settings that can be implemented by the node of FIG. 5 in
some embodiments.

FIGS. 8A, 8B and 8C graphically depict alternative
non-differentiable LLO activation functions that can be
utilized in accordance with further embodiments.

FIG. 9 schematically represents aspects of a training
operation used to train the IGL-ANN in accordance with
some embodiments.

FIG. 10 is a flow chart for an IGL-ANN training routine
illustrative of steps that may be carried out in accordance
with some embodiments.

FIG. 11 shows another exemplary IGL-ANN network in
accordance with further embodiments.

FIGS. 12A and 12B show different configurations for IGL
nodes in further embodiments.

FIGS. 13A and 13B depict convolutional filter sections
that can be constructed as a part of an IGL-ANN using the
nodes from FIGS. 12A and/or 12B in further embodiments.

FIGS. 14A through 14E show different array configura-
tions to process multi-dimensional input data in further
embodiments.

FIG. 15 is a functional block representation of another
IGL-ANN system configured to process multi-output data in
accordance with further embodiments.

FIG. 16 shows the use of another IGL-ANN as a back end
for a conventional ANN in further embodiments.

FIG. 17 shows a hybrid ANN system with another IGL-
ANN embedded within a conventional ANN in further
embodiments.

FIG. 18 shows an exemplary networked computer pro-
cessing environment in which various embodiments of the
present disclosure can be advantageously practiced.

FIG. 19A is a functional representation of a parallel data
processing environment for a selected IGL-ANN in accor-
dance with further embodiments.

FIG. 19B is a functional representation of another parallel
data processing environment used in further embodiments.

FIG. 20 is a graphical representation of a specially con-
figured error function in some embodiments.

FIG. 21 shows a node pruning sequence that may be
carried out in accordance with further embodiments.

FIG. 22 shows a batch learning scheduling sequence that
may be carried out in accordance with further embodiments.

FIG. 23A is a functional block diagram of a hybrid
IGL-ANN section with one or more fully interconnected
layers (FILs) in further embodiments.

FIG. 23B is a schematic depiction of an FIL arrangement
from FIG. 23A in some embodiments.

US 12,242,946 Bl

3

FIG. 24 is a functional block representation of a software
modeling and visualization tool in some embodiments.

FIG. 25 shows a sequence diagram for a chain isolation
optimization process carried out by the tool of FIG. 24 in
some embodiments.

FIG. 26A is a table showing a configuration for an
example IGL-ANN configured and trained using the pro-
cessing sequence of FIG. 25.

FIG. 26B is a graphical representation of error rate data
obtained from the processing sequence of FIG. 25 in some
embodiments.

FIG. 26C shows a graphical depiction of the example
IGL-ANN from FIG. 26A during a training operation.

FIG. 27A is a graphical depiction of another example
IGL-ANN configured using the sequence of FIG. 25 in an
initialized state.

FIG. 27B shows the IGL-ANN from 27A during ongoing
training.

FIGS. 28A and 28B show respective representations of
another example IGL-ANN during initialization and during
ongoing training in further embodiments.

FIG. 29 shows a functional block diagram of a system that
incorporates a fully trained IGL-ANN in accordance with
further embodiments.

DETAILED DISCUSSION

Various embodiments of the present disclosure are gen-
erally directed to systems and methods for efficiently train-
ing a specially configured Artificial Neural Network (ANN)
without the need for backpropagation to minimize loss
function (error).

As explained below, some embodiments configure the
ANN as an array of integer gate logic (IGL) nodes in
multiple layers. Each IGL node has multiple inputs, such as
two, and a single output which is connected to one, and only
one, downstream node in the array. Each node has a number
of parameters including weight (W) values for each input, a
bias (B) value, and a globally selected constant precision
(CP) value.

Each node further has a non-linear activation function.
While not necessarily limiting, in at least some cases the
non-linear activation function, sometimes referred to herein
as a Linear Logic Output (LLO) activation function (AF), is
non-differentiable and has one or more local minimum
and/or local maximum points apart from the origin.

During processing, a weighted sum (WS) is calculated
responsive to the W, B and CP values, and the WS is
supplied to the LLO-AF to generate the node output.
Because the output is only supplied to one downstream node
in the array, a chain isolation optimization technique can be
efficiently carried out to adjust the parameters of each node
in turn. Generally, the only nodes in the array that will be
affected by the parametric adjustments are those nodes in a
chain line from the associated output node to the selected
node undergoing adjustment. Hence, adjustments can be
quickly recalculated for each of the chain line nodes to
determine the effect of the new parametric values upon the
error term.

Empirical tests carried out to date with standardized test
sets (such as the MNIST database) show significant reduc-
tions in training time, often by many multiple orders of
magnitude, over existing ANN configurations. Because the
system can model a variety of difficult to implement Boolean
logic gates (e.g., XOR, NAND, NOR, etc.) based on the
parametric values, certain difficult to train functions, such as
XOR, can be quickly converged with up to 100% accuracy

20

25

40

45

60

65

4

(0% output error). Integer arguments and values eliminate
the need for floating point calculations while maintaining
substantially any desired level of precision. The boundaries
set up for the novel LLO-AFs further ensure that saturation
and vanishing/exploding gradients are substantially avoided.

The IGL nodes are suitable for implementation as or with
any number of network configurations including fully con-
nected nodes, multi-layer perceptron (MLP) nodes (but with
only one connection per node downstream), convolutional
neural networks (CNNs), recursive networks (RNNs)
including modified LSTM (long/short term memory) neural
networks, etc. Moreover, the IGL-ANN can be appended to
or inserted into as a separate operational block within the
context of a larger more conventional network to provide
localized optimization while still permitting operation of the
existing network. Any amount of dimensionality can be
processed including 1D, 2D, 3D, 4D, up to n-dimensions.

When implemented in software, the system is embarrass-
ingly parallel and can readily be adapted for parallelization
at both the network level and the node level. Other tech-
niques are disclosed herein that further promote efficient
training including an enhanced error function, intelligent test
data pruning, batch learning scheduling, parallel processing,
and a network modeling and visualization software tool.

The system has demonstrated the ability to achieve error
convergence rates that are significantly improved over exist-
ing systems that rely upon backpropagation and other gra-
dient descent based approaches. It is contemplated that the
system can accommodate any number of total layers, includ-
ing hundreds or thousands of layers, while providing an
effective, non-backpropagation based training methodology.

In order to describe these and other features and advan-
tages of various embodiments of the present disclosure, it
will be helpful to briefly discuss ANNs of the existing art.
Existing Art ANNs

FIG. 1 is a simplified representation of an ANN 100 in
accordance with the existing art. As with substantially all
ANN:S, a series of inputs 102 are supplied, and correspond-
ing outputs 104 are generated in response. To initially
configure the system, training data with known outputs are
supplied to the ANN during a training (learning) phase, and
the system uses backpropagation or similar gradient based
techniques to reduce the output error.

The ANN 100 can take any number of suitable forms
including as a Multi-Layer Perceptron (MLP) network, a
Feedforward Neural Network (FNN), a Convolutional Neu-
ral Network (CNN), a Recurrent Neural Network (RNN), a
Long Short-Term Memory (LSTM) network, a Radial Basis
Function (RBF) network, etc.

FIG. 2 shows a representation of an ANN 110 correspond-
ing to the ANN 100 in FIG. 1 with a fully-connected MLP
configuration. Other configurations can be used. In FIG. 2,
nodes 112 are interconnected via interconnections 114
among a succession of layers. These layers include an input
layer 116, an output layer 118 and a number of intermediate
(hidden) layers 120 (in this case, two). The respective
numbers of layers, and the numbers of nodes in each layer,
can vary based on the design constraints, hardware limita-
tions, operational requirements, etc. of the system. As is
conventional, the variable X represents the input which is
supplied to the various nodes of the input layer 116, and the
variable Y represents the output which is supplied to the
various nodes of the output layer 118. The number of output
nodes will depend on the configuration of the system, and so
can be a single node or an array of nodes.

Training ANNs such as the ANN 110 in FIG. 2 usually
involves a two step process: first, a feedforward operation

US 12,242,946 Bl

5

takes place, as represented by arrow 122, in which test data
(X) are supplied as inputs to the system. Various internal
parametric values, such as weights and biases, are initially
set to some suitable levels (including random settings) and
an initial estimated output value (Y) is generated based on
these initial settings.

Second, a backpropagation operation takes place, as rep-
resented by arrow 124. The backpropagation operation uses
gradient descent to reduce the error by calculating the partial
derivatives of each activation function of each node along
each path through the network from the output layer 118 to
the input layer 116 over a succession of intervals. The
weights are adjusted in a direction indicated by the deriva-
tives to minimize the overall error.

As noted above, backpropagation can require significant
time and resources, is computationally complex, and has
limited effectiveness, particularly for higher level (deep
learning) networks. Vanishing gradients, exploding gradi-
ents and saturation effects can cause a loss of error reduction
effectiveness, further operating as an upper bound on the
ability to reduce loss function error.

A particular limitation with backpropagation trained net-
works is the inability to easily model certain types of input
data. For example, the so-called exclusive-OR (XOR) Bool-
ean logic function is known to be particularly difficult to
implement in a traditional ANN. As will be recognized, an
XOR function operates in accordance with the logic states of
Table 1:

TABLE 1
Input A Input B Output
0 0 0
0 1 1
1 0 1
1 1 0

In an XOR operation, if either input is high (e.g., logical
“17), then the output is also high. However, if both inputs are
high, or low, then the output is low. In a more general sense,
XOR provides a “detect if either is present, but not both”
operation.

From an ANN standpoint, an XOR function within the
network can generally be viewed as attempting to train the
network to provide a positive detection if a certain feature is
present in the input data stream, unless another feature is
also present in the input data stream as well, in which case
a negative detection is provided. It is well established in the
literature that training a traditional ANN to accurately and
reliably implement the equivalent operation of an XOR
function is exceedingly difficult. It may be possible in some
cases to train a node or a small set of nodes to operate as an
XOR, but the global adjustments made during backpropa-
gation make this difficult to establish and maintain in a large
network. Other exclusionary Boolean logic functions, such
as NAND, NXOR, etc., are difficult to train for similar
reasons.

Integer Gate Logic ANNs

FIG. 3 is a functional block representation of a specially
configured ANN 130 constructed and operated in accor-
dance with various embodiments of the present disclosure.
The ANN 130 is referred to as an Integer Gate Logic ANN,
or IGL-ANN, and provides efficient training without the
limitations associated with existing backpropagation and
other techniques. Indeed, the IGL-ANN eliminates the need
for backpropagation entirely in favor of a significantly faster
and more robust training approach.

—_

0

—_

5

20

30

35

65

6

The IGL-ANN 130 otherwise operates in a manner simi-
lar to the existing art ANNs 100, 110 described above, and
can be configured to carry out substantially any of the above
described operations of the conventional ANNs (e.g., clas-
sification, pattern detection, content generation, LL.M capa-
bilities, etc.). To this end, the IGL-ANN operates to receive
input data 132 and generate estimated output data 134 after
a suitable non-gradient descent based training operation
described below.

FIG. 4 is a schematic representation of another IGL-ANN
140 similar to the IGL-ANN 130 of FIG. 3. As with the
conventional ANN of FIG. 2, the IGL-ANN 130 is formed
as an array of nodes 140 (referred to herein as IGL nodes)
with associated interconnections 142. The nodes 140 are
arranged into multiple layers, including an input layer 144,
an output layer 146 and multiple (in this case, two) hidden
layers 148.

Initially, it will be noted that each node 140 is connected
to a single downstream node, and each node, apart from the
input layer nodes in layer 144, has a total of two inputs. This
is a particularly useful configuration, but other arrangements
are contemplated as discussed below. While the network
converges to a single output node (Y), other output layer
configurations can be used so that any number of output
nodes can be provided in the output layer. Nevertheless,
because each node is shown to be connected to only one
downstream node, the network tends to converge rapidly.

Arrow 150 depicts a feedforward operation in which input
(X) data are input to the input layer 144, and estimated
output (Y) data are generated in the output layer 146 based
on various parametric values of the nodes 140. Arrow 152
depicts a follow up chain isolation optimization operation, in
which error in the resulting output is minimized. Prior to
describing the chain isolation optimization, however, it will
be helpful to provide additional details regarding the indi-
vidual nodes 140.

To this end, FIG. 5 is a graphical representation of a
selected IGL node 140 from FIG. 4 in some embodiments.
The node 140 can be realized in hardware (e.g., gate logic
and other hardware components), in software, in firmware,
or a combination of the same. From an operational stand-
point, the exemplary node 140 includes a set of input buffers
154 to receive the input values from the upstream nodes in
the array (or, a single value if the node is in the input layer).
In this example, the node 140 receives a total of two inputs,
referred to herein as X1 and X2, and these values are
temporarily stored in the buffer 154.

An output buffer 156 similarly stores the output value,
denoted herein as Y1 or simply Y (for selected node N=1),
for transmission downstream to the next node in the array.

Various parameters utilized by the node 140 include a first
weight (W1) 158, a second weight (W2) 160, a bias (B) 162,
and a global precision (granularity) value referred to as CP
164 (constant precision). It is contemplated that the CP value
(and its inverse P) are globally set and applied to all nodes
in the array equally, as explained more fully below. It will be
appreciated that the various values in blocks 158-164 are set
as needed based on the configuration of the node (e.g.,
hardware, software, etc.).

A weighted sum (WS) is generated by block 166 based on
the inputs X1, X2 and the parameters W1, W2, B and CP. A
linear logic offset activation function (LLO-AF) block 168
provides a non-linear transformation of the WS to generate
the output value Y1 as explained below. A data store 170
comprises local or accessible global memory for previous
values and other control information used during the opera-
tion of the node 140.

US 12,242,946 Bl

7
FIG. 6 provides a schematic representation of the node
140 from FIG. 5. The weighted sum value WS may be given
by:

WS=(X1*W1*CP)+(X2*W2*CP)+B)

Which is output by summing block 180 based on the
operation of register blocks 172A/172B and scalar blocks
174A/174B and 176A/176B. The bias (B) is supplied by
scalar block 178; in alternative arrangements, a base input
value (such as a normalized logical 1) is multiplied by a
biasing weight (BW) to apply the desired bias value B.

The output WS is next applied to the LLO-AF as shown
by block 182 to generate the output Y1, as:

Y1=LLO-AF(WS) 2

where Y1 is a function of WS. The function LLO-AF of
block 182 is graphically represented by curve 200 in FIG. 7.
Other activation function configurations can be used so that
the curve 200 is merely exemplary and is not limiting. The
curve 200 is formed of discrete segments 200A, 200B,
200C, 200D and 200E which are plotted against a horizontal
axis 202 and a vertical axis 204 with normalized values P.

It will be noted that the curve 200 is non-differentiable
due to the localized minimum at 2P on the horizontal axis
202 providing a discontinuous gradient effect (e.g., the
gradient decreases from 3P to 2P, but increases from 2P to
P, etc.). While it is contemplated that a differentiable curve
may be alternatively used with a more continuous gradient,
such is unnecessary, and in some cases may be detrimental
to the efficient convergence of the system.

As noted above, the node 140 performs the various
calculations shown in FIG. 6 and equations (1) and (2) using
integer based calculations; that is, no floating point decimal
calculations are needed or desired in at least most embodi-
ments. Besides simplifying the complexity of the calcula-
tions by eliminating the additional overhead and circuit
complexity of supporting floating point (decimal) calcula-
tions, the use of integer based calculations, as normalized by
the use of the value P, also serves to advantageously reduce
or eliminate the problems of vanishing gradient and satura-
tion effects. Having said that, the system can be operated
efficiently with the use of floating point calculations, and
such implementations are contemplated as being within the
scope of this disclosure as well.

To accommodate these integer math calculations, the
value P represents the precision of the system. The precision
P is a selectable value to accommodate the desired granu-
larity in the data while maintaining the use of integer math.
The value CP, which was introduced above in FIGS. 5-6, is
more particularly a precision multiplier constant, or the
inverse of P (e.g., CP=1/P). Stated another way, P can be
viewed as representing the total number of incremental
values that are available between the rail values of 0 and P,
and CP represents the corresponding amount of distance
from one increment to the next over this range.

Table 2 shows various example values for P and CP based
on orders of 10:

TABLE 2
Precision (P) Increment (CP = 1/P)
100 0.01
1000 0.001
10,000 0.0001
1,000,000 0.000001

10,000,000 0.0000001

—_

0

15

30

45

60

65

8

While orders of 10 are shown, other orders of magnitude
can be selected as desired. In some cases, using P values that
are orders of 2 (e.g., 4096, 32,768, etc.) as the precision
levels may be useful in expediting calculations.

Returning to FIG. 7, it can now be seen that for a given
P value (for example, P=1,000,000), then there are 1,000,
000 points or levels between 0 and P for segments 200A,
200B and 200C in curve 200. The corresponding CP (incre-
ment) value is 0.000001 along these segments. Other values
of P will provide different resolution levels. Without limi-
tation, in some embodiments 32 bit integer values are used,
although other sizes may be appropriate for a given imple-
mentation.

Table 3 shows the application of the activation function
LLO-AF by block 182 in FIG. 6 to the weighted sum WS
values obtained from block 180 in FIG. 6. The function is
applied in the form of a series of five (5) conditional
statements corresponding to the five segments 200A through
200E:

TABLE 3
WS Value: Output Y1 Value:
(1) fWS <0 0
(2) If WS is between O to P WS
(3) If WS is between P and 2P P-(WS-P)
(4) If WS is between 2P and 3P WS - 2P
(5) If WS > 3P P

The adjoining nature of the various segments 200A
through 200E means that the boundary conditions are con-
tinuously resolved (e.g., if WS is exactly equal to P, then
Y 1=WS regardless whether condition (2) or condition (3) is
applied). It does not matter what the absolute magnitude of
P is selected to be: whether P=100 or P=10,000,000,000, the
above logic from Table 3 will provide eflicient application of
the LLO activation function LLO-AF.

The ranges for the weights W1 and W2, the bias B, and
the weighted sum WS are graphically represented in FIG. 7
by ranges 206, 207, 208 and 209 which extend along the
horizontal axis 202. The minimum (Min) and maximum
(Max) values for W1, W2, B and WS, and the corresponding
output value Y1, are also listed in Table 4:

TABLE 4

Parameter Minimum Value Maximum Value

W1 -2P +2P

w2 -2P +2P

B -P +3P

WS -5P +7P

Y1 0 P
(Output)

The magnitude of the output Y1 corresponds to the height
of the function along the horizontal axis 204, and hence, will
be bounded by O to P as dictated by the value of WS. The
maximum output of each node will thus be restricted to a
positive integer value between 0 and P, inclusive.

The LLO activation function as disclosed herein is a novel
application that allows a single node to model all 2-input
1-output digital Boolean logic functions, as well as multi-
tudes (e.g., thousands, millions, more) of interpolated func-
tions, based on the selected precision (P) and selected
parameters (B, W1, W2). This functionality includes the
ability to model particularly difficult Boolean functions,
including but not limited to XOR, NOR, NAND, etc. The

US 12,242,946 Bl

9

parameter settings for (B, W1, W2) to implement 16 stan-
dard Boolean functions, as well as NULL and ALL func-
tions, are provided by a gate logic configuration table in FIG.
7A. For simplicity of illustration, the values in the table are
normalized; that is, during implementation, each parameter
value (B, W1, W2) is multiplied by the precision value P. As
can be seen from the respective bias and weight values in the
table, the functions labeled as NXA, NXB correspond to
Boolean implication functions, and the functions labeled as
XA, XB correspond to Boolean inhibition functions.

From the table in FIG. 7A, a particular node may be
configured as an XOR functional node using nominal
parameter settings of (0, 1P, 1P). If P is set equal to
1,000,000 (1M), then the implemented values are (0, 1M,
1M). A NAND functional node may be set using (3P, 2P,
—2P), and so on. As noted above, it has been found
exceedingly difficult in many existing ANN configurations
that use backpropagation training techniques to be able to
accurately implement such functions across the network.

The nodes can further be configured as “near-Boolean”
nodes. For example, a particular node may be made a
“near-XOR” node with values that are close to (0, 1P, 1P),
such as settings of (0.01(P), 0.9946(P), 1.10827(P))=(10,
000, 994,600, 1,108,270) where P=1M. A near-XOR node
with these settings (or similar settings) would largely oper-
ate to provide an XOR response to the input values, but with
precisely tuned behavior not present in a straight XOR node
configuration with parameters (0, 1M, 1M). As such, the
nodes may be viewed as having analog gate logic capabili-
ties, which significantly enhances the training capabilities of
the network.

Among the various configurations shown in FIG. 7A, a
basic weighted sum mode can be used with settings for (B,
W1, W2) of (0, 0.5P, 0.5P). This enables the node to
substantially behave like a traditional ANN node in addition
to these other logic gate capabilities. Of course, a number of
other, non-logic gate configurations are available as well
over the full range of the various parameters as shown in
FIG. 7 and Table 3, such as (2.5P, 1.7P, —1.4P), etc. Nodes
with these and other parametric configurations are some-
times referred to herein as having an unknown function.

The ability to accommodate and model this full range of
Boolean functions, as well as near-Boolean functions and
unknown functions, is facilitated by the use of a non-
differentiable linear logic offset activation function (ND-
LLO-AF). As used herein, the term “non-differentiable” is
not used in a classic mathematical sense, but rather, in a back
propagation sense to mean that the ND-LLO-AF does not
provide a single gradient that descends to the origin, as with
existing functions (e.g., ReL.u, Softmax, etc.). Instead, non-
differentiable as used herein refers to the function having
more than one localized minimum and/or localized maxi-
mum point.

FIG. 8A is a schematic depiction of aspects of a gener-
alized ND-LLO-AF 210 that can be used in conjunction with
various embodiments. The function 210 is similar to the
function 200 discussed above in FIG. 7, and includes
multiple local minimums 212A and 212B, multiple local
maximums 214A and 214B, and first, second and third
gradient segments 216A, 216B and 216C.

The minimums 212A and 212B can correspond to the
junctions between segments 200A/200E and 200C/200D in
FIG. 7, or can have other values. It is contemplated albeit not
necessarily required that the minimums 212A/212B will
have values equal to or close to zero (0). Similarly, the
maximums 214A and 214B can correspond to the junctions
between segments 200A/200B and 200C/200D in FIG. 7,

20

25

40

45

60

65

10
and will have values equal to or close to P. The various
gradients 216A, 216B and 216C can correspond to the
segments 200A/200B/200C, although these can take other
shapes as well including curvilinearly extending, seg-
mented, etc. While only two minimums and only two
maximums are shown, other numbers can be used.

As noted previously with respect to the discussion of FIG.
7, the local minimum 212B is bounded by two local maxi-
mums (e.g., 214A/214B) so that the gradient along curve
210 decreases when approaching point 212B and increases
when moving away from point 21B in both directions. The
same is true for local maximum 214A, where the gradient
increases toward this point and decreases when moving
away from this point. This provides a localized trough or hill
within the overall function profile. As will be appreciated,
such features are undesirable or unusable when implement-
ing conventional backpropagation, since movement in a
given direction along the horizontal axis provides both
increases and decreases in gradient. Using this definition, it
will be understood that the LLO-AF 200 in FIG. 7 is also
fairly characterized as an ND-LLO-AF.

FIG. 8B provides a graphical representation of another
ND-LLO-AF activation function 210A with a sinusoidal
waveform based on y=sin (x). FIG. 8C shows another LLO
activation function 210B with a sawtooth waveform based
on parallel discontinuous segments all having the same
slope. It will be noted that reversing the order of condition
(3) in Table 3 provides the associated sawtooth shape in FIG.
8B.

FIG. 8C further shows that, while some embodiments
truncate the LLO activation function at +3P, additional
cycles can be provided as desired (e.g., +4P, +5P, etc.). Any
number of other LLO activation functions may be used as
desired with networks configured as described herein.
Chain Isolation Optimization

As stated previously, backpropagation is unnecessary and
can be eliminated during the IGL-ANN training process.
This is because, except as noted below, the output of each
node in the IGL-ANN passes as a primary input to a single
downstream node rather than to multiple downstream nodes
in parallel. Stated another way, a single unique path, rather
than multiple parallel paths, can be traced through a network
section from the output node/layer to each input and/or
hidden node within a given network section. This is
explained more fully in FIG. 9.

FIG. 9 is a schematic representation of another IGL-ANN
220 having a population of nodes 222 arranged as described
above. For a selected node N within the array 220, a single
active chain path 224 extends from node N to the output
node Y. The active chain path 224 for node N is a pathway
along which the output from node N passes successively to,
and is acted upon, nodes N+1, N+2, N+3 and N+4 before
reaching terminal node Y. This is the only active feedfor-
ward path between nodes N and Y. This condition is true for
each of the remaining input and hidden nodes in the network
section 220.

It will be appreciated that the impact that the output of
node N decreases at each successive layer (e.g., the output
of node N accounts for 50% of the input at node N+1, 25%
at node N+2, 12.5% at node N+3 and so on), but the output
of node N nevertheless is actively passed through and
influences this chain of nodes, and only this chain of nodes,
to the output node Y.

It follows that, if the parametric values for node N (e.g.,
B, W1, W2) are adjusted for a given input X to the array 220,
the only nodes that will be affected are the downstream
nodes N+1 through N+4 along path 224 that are connected

US 12,242,946 Bl

11

to receive the output of node N. All remaining nodes in the
array will remain (nominally) unaffected by the adjustments
to the parameters of node N and will (nominally) output the
same values as before for the same input training data.

This is a key point to understanding the chain isolation
optimization carried out in accordance with at least some
embodiments. Values generated by the various nodes in the
array can be stored and reused without the need to recalcu-
late these values.

Instead, all that is needed to test to see if a particular
parametric adjustment to node N in FIG. 9 has desirably
reduced (or alternatively, undesirably increased) the loss
function at output node Y is to make the adjustment to node
N, generate a new output value (Y1 for node N), and
propagate the updated output from node N forward along
chain path 224 to each of the downstream nodes N+1
through N+4 to obtain a new, updated array output value Y.

Accordingly, FIG. 10 provides a flow chart for an IGL-
ANN training routine 300 illustrative of steps carried out in
accordance with the foregoing discussion. It will be appre-
ciated that the routine 300 is merely exemplary and is not
limiting, so that variations are contemplated and can readily
be implemented including the omission, addition, modifica-
tion and resequencing of various steps, etc.

For purposes of the present example it will be contem-
plated that the following discussion of FIG. 10 will con-
template the training of a selected IGL-ANN such as the
exemplary array 130 in FIG. 4 or the exemplary array 220
in FIG. 9. As part of this chain isolation optimization
sequence, a succession of training data sets will be presented
which include input X data sets along with corresponding
correct output Y values. A succession of the training data sets
will be used, including in subsequent selected batches as
explained below.

The array network is initialized at step 302. This can
include a number of operations including selection of the
number of nodes and layers in the system, and the setting of
various initial values to the data. A desired precision P is also
selected at this time appropriate to the resolution of the
training data sets and other factors. The parameters may be
randomized (e.g., random weights and bias values may be
assigned through the network), or predetermined values
(e.g., 0.5 for every value, etc.) may be used. Ultimately, it
has been found that the rate of convergence will be suffi-
ciently accelerated that while random values tend to work
well, any values, including rail values (e.g., weights of —2P,
etc.) will also work well as initial values.

A training data set is next applied to the network at step
304. After a statistically sufficient number of runs, an initial
error term (loss function) is calculated at step 306. This
initial error term, sometimes referred to herein as YE1, is
determined in relation to the difference between the
expected (desired) output Y and the observed (actual) output
Y for each separate batch or combination, in total. As such,
the calculation of the initial observed error YE1 can be the
same as other loss function calculations on conventional
ANNSs, or may be a specially configured loss function as
described below in a following section. It is contemplated
that, however expressed, the YE1 value will usually have a
non-zero magnitude; that is, at least some error will exist in
the system between the true outputs and the estimated
outputs.

At this point, the routine transitions to chain isolation
optimization at step 308 by selecting a first node from the
network for evaluation and parametric adjustment. In some
embodiments, all of the non-input layer nodes in the system
are selected in turn for evaluation, so one node may be as

20

25

40

45

60

65

12

good as the next one for this initial selection. A random
selection mechanism can be used for these node selections,
or a step-wise ordered selection pattern can be used,
informed by previous passes through the system. It is
contemplated that, in situations where an ultimate threshold
level of error is acceptable, nodes will continue to be
evaluated and adjusted until this ultimate threshold level is
met.

The routine continues at step 310 where the selected node
(in this case, node N in FIG. 9), undergoes repetitive
variation of the respective parameters W1, W2 and/or B
from an initial value to an updated value while presenting a
subset of the test data sets to the system.

One way to provide different variations of the parameters
is to provide a limited number of combinations of these
parametric values, such as 35-40 combinations, against each
of a selected number (batch) of randomly selected test data
combinations. For example, for a given first test combina-
tion (e.g., input X and actual output Y), each of the various
logic gate combinations of FIG. 7 can be applied to deter-
mine an associated output Y1 value from the node N. Other
combinations can include intermediate values (e.g., various
other settings for W1. W2 and B such as 0.3, 0.75, -1.4,
+1.8, etc.), randomly selected values, and so on.

By repetitively presenting a fixed X input to the system,
the values of other nodes can be recorded in memory, so that
it is not necessarily required to pass the full data set through
the system each time. Rather, with reference again to FIG.
9, each time a new combination of parametric values (B,
W1, W2) are updated to node N, each of the X2 inputs along
the chain path 224 will need to be updated, but the rest of the
array 220 remains unaffected and the X1 values remain
consistently the same independently of what parametric
changes are made to node N.

It follows that a smaller batch of records can be used to
cycle through each set of parameters and the error rate can
be evaluated quickly to identify first the correct direction,
and secondly, the correct magnitudes of the respective
parameters that provide reductions in the error. These steps
are represented by steps 312, 314, 316 and 318 in FIG. 10.
Other processing sequencing can be used.

In one non-limiting example, if 2000 combinations (test
points of X, Y) are randomly selected, and 35 different
combinations of parameters are selected for testing against
these 2000 combinations, then a complete first pass evalu-
ation of the node can take place with roughly 70,000 integer
math calculations for node N. If the X1 input values are
captured for each combination, then an updated YE (new)
value can be calculated quickly by feeding forward the
newly generated outputs from node N to the downstream
nodes N+1 through Y. As a result, testing and optimization
of each selected node may only require a relatively short
period of time, such as a matter of seconds or less, with
optimized levels retained.

The process thus continues on with the selection of a new
node, such as randomly, and the process is repeated. An
initial smaller batch of test point combinations, such as 20
out of a larger batch of 2000, can be used to initially test and
identify promising combinations, which can then be further
confirmed by running the rest of the batch. At such time that
the error has been sufficiently reduced, the system can exit
the optimization routine as shown at step 320. Additional
chain isolation optimization techniques are described in
further sections below.

Network Implementation Alternatives

FIG. 11 shows another simplified IGL-ANN array 330

constructed and operated in accordance with various

US 12,242,946 Bl

13

embodiments. The array 330 is arranged of 2 -input 1-output
IGL nodes 332 with interconnections 334 as shown. In this
simplified example, the network has six (6) layers and a total
node count of 57 nodes.

FIG. 11 is useful in that it points out a result of using
2-input, 1-output nodes; the total number of input nodes may
or may not be a power of 2. As such, during subsequent
combining operations that take place with higher level
layers, a layer may reduce to an odd number (such as layer
3 with 7 active nodes). In this case, a dummy node such as
336 can be used to supply the second input, with the dummy
node always supplying a constant value such as a (normal-
ized) 0 or 1 level input to the downstream node. Other
dummy nodes can be used as required throughout a given
ANN.

FIGS. 12A and 12B illustrate different node configura-
tions for the IGL nodes in accordance with further embodi-
ments. A node 340 in FIG. 12A has two inputs (X1, X2) and
one output (Y1). Node 342 in FIG. 12B has three inputs (X1,
X2,X3) and one output (Y2). Since there are numerous logic
gate configurations with more than just two inputs, these
figures illustrate that any number of inputs can be provided
to each node and have the node still operate as a Boolean
logic gate with the appropriate parametric values. It is
contemplated that the 3-input node 342 would have param-
eters of (B, W1, W2, W3) with the weights W1-W3 applied
to the respective inputs X1-X3 as part of the WS calculation
(see FIG. 6).

The examples described thus far have connected all of the
nodes in an upstream layer to the nodes in a downstream
layer. This is merely exemplary and not limiting, as other
combinations are contemplated including arrangement of
the IGL nodes as convolution filters 344, as generally
represented in FIG. 13A.

As will be recognized, a convolution filter is a small
subset of a larger network that covers or traverses the input
data to detect a multi-pixel feature. The filter may be realized
as a smaller array of MxN nodes (e.g., 3x3, 10x10, 1x4, etc.)
which cooperate as a unit to scan different portions of the
larger input data set.

FIG. 13B shows an IGL-ANN network 350 with input
data 352 scanned by one or more convolution filters 344 A,
344B, 344C, 344D. These filters may represent a single
“block” of filter nodes that traverse the input data 352 (such
as left to right and up to down), or may be separate filters that
examine different zones or portions of the input data in
parallel (such as corners, sides, middle, etc.).

The outputs from the filters 344 A-344D are provided to a
downstream pooling layer 354 which receives various
grouped output values from the filters 344A-344D (e.g.,
Max, Min, Avg., etc.) and provides these to a downstream
layer (not shown) for further processing. For example, the
maximum (Max) output value from the nodes making up
filter 344A may be forwarded from the filter to the next
layer, and so on. The IGL nodes disclosed herein are
particularly suitable for convolutional applications such as
set forth in FIGS. 13A-13B.

The IGL-ANN systems presented herein can further be
adapted to process multi-dimensional data. FIGS. 14A-14E
show different alternative interconnection configurations
that can be utilized for single dimension (1D), 2D, 3D and
4D input data. Other dimensional data, including up to 100D
or more, can be similarly processed as required.

FIG. 14A shows a 1D array 360A with input nodes 362
and downstream nodes 364. These interconnections are
similar to those described above. It will be appreciated that
multi-dimensional data can be “flattened” into a single

20

25

40

45

60

65

14

stream of characters and processed by a 1D array (e.g., the
28x28 MNIST data sets can be flattened to a 784x1 array
and processed in this fashion).

FIG. 14B shows a simple 2D array 360B with a 2x2 array
of input nodes 366 and various downstream nodes 368. The
top two input nodes are fed to a first downstream node, and
the bottom two input nodes are fed to a second downstream
node. Other arrangements can be used.

FIG. 14C shows another 2D array 360C with a 4x4 array
of input nodes 370. In this case, nodes 372A/372B process
respective pairs of the input nodes 370, and so on with nodes
374A/374B, 376 and 378.

FIG. 14D generally represents a 3D array 360D with 3D
input data 380, such as imaging or modeling data, expressed
in three dimensions (axes X, Y, Z). In this embodiment, layer
382 processes nodes combined along the X-axis, layer 384
processes nodes combined along the Y-axis, and layer 386
processes nodes combined along the Z-axis 386. Further
processing layers (not shown) can combine (flatten) these
results as needed.

FIG. 14E generally represents a 4D array 360E in which
time T is an additional dimension. This can process a variety
of data sets including but not limited to moving 3D images
(such as a succession of frames, etc.). The input data sets are
represented by blocks 388, and these are respectively pro-
cessed in the T, X. Y and Z axes by successive layers 390,
392, 394 and 396. In some cases, the processing may repeat
such as shown by second T-layer 398, or other processing
can be supplied.

Accordingly, an IGL-ANN array can be arranged and
trained to detect a portion of an input image, with a separate
filter configured to evaluate a different area of the image,
detect different types of features, etc. Similarly, the nodes
can be arranged to process multiple dimensions of data
through separate layers or switching sequences.

FIG. 15 shows another IGL-ANN system 400 in accor-
dance with further embodiments. The system 400 is config-
ured to process data sets with multiple outputs. In this
simplified example, there are a total of four (4) outputs and
hence, four stages 402A, 402B, 402C and 402D which
operate in parallel. Each stage is nominally identical and
constitutes a separate IGL-ANN section that converges to a
single node output (in this example). Thus, each stage
includes a corresponding input layer 404A, 404B, 404C and
404D, one or more hidden layers 406A, 4068, 406C and
406D, and an output layer (node) 408A, 408B, 408C and
408D.

An input control block is denoted at 410 to process the
input data supplied to the system 400, and an output control
block is denoted at 412 to process the outputs provided by
the respective stages (sections) 402A-402D. The training
data are supplied by block 414. The same training data may
be supplied to all four stages, with each stage trained to
detect a different output. These are denoted by blocks 416 A,
416B, 416C and 416D, which provide output sets of (w, X,
Y, z) so that the first stage is trained to detect the w (first) bit,
the second stage 402B is trained to detect the x (second) bit,
the third stage 402C is trained to detect the y (third) bit, and
the fourth stage 402D is trained to detect the z (fourth) bit.

To give a practical example, assume that the training data
of block 414 is the so-called MNIST (Modified National
Institute of Standards and Technology) handwriting data set.
As will be recognized, the MNIST data set is a database of
handwritten digits that is commonly used for training vari-
ous image processing systems. The MNIST data set com-
prises approximately 60,000 training data examples and
approximately 10,000 testing data samples.

US 12,242,946 Bl

15

Each sample is a handwritten character from zero (0) to
nine (9), and is provided across an array of 28x28 pixels.
Each pixel can be assigned a gray-scale value over a selected
range; a commonly employed range is 0-255, with O repre-
senting full black and 255 representing full white.

In this case, the system 400 only has four (4) stages
402A-402D so the system can only detect 4 of the 10
different digits 0-9 in the database (e.g., the stages 402A-
402D may be trained to respectively detect the digits 0-3,
etc.). Of course, a total of 10 such stages could be utilized
to account for all of the digits 0-9.

The system 400 is trained by training each separate stage
for each separate possible output. Data are fed into the
system by the input control block 410 and chain isolation
optimization techniques are applied to reduce loss function
error. Thereafter, during normal operation, the predicted
output across the networks is the output value (w, x, y, z)
with the highest magnitude, as determined by the output
control block 412.

Operational Environments

The IGL-ANN systems as variously embodied herein can
be implemented a variety of operational environments
including in hardware, software, firmware, across distrib-
uted networks, specially configured integrated circuits,
graphical processing units (GPUs) with multiple processors,
etc.

FIGS. 16 and 17 show operation of the IGL-ANN arrays
in combination with existing ANNs. For example, FIG. 16
shows a system 420 where a conventional ANN 422 (such
as in FIG. 2) operates as a front end to a processing
sequence, and an IGL-ANN 424 is configured as a back end
processing section to take the outputs of the front end system
422 and further process to reduce errors. Because of the
speed and capabilities of the IGL-ANN processing, the
capabilities of the conventional ANN may be enhanced by
the addition of the IGL-ANN unit. Other arrangements are
contemplated, including using the IGL-ANN as a front end
pre-processor for a conventional ANN, etc.

FIG. 17 shows another system 430 where an otherwise
conventional ANN 432 has an embedded IGL-ANN section
434 as an integral section of a larger network. It is contem-
plated that using an IGL-ANN such as 434 as a separate
operational module can provide certain advantages to an
existing network architecture, including but not limited to
operation as a convolutional filter, etc.

FIG. 18 shows a generalized computer processing envi-
ronment 440 in which various embodiments of the present
disclosure can be advantageously practiced. The environ-
ment 440 includes a local client device 442 coupled to a
remote server 444 via one or more intervening networks
446.

The client device 442 can take any number of suitable
forms such as but not limited to a desktop computer, a
laptop, a tablet, a smart phone, a work station, a terminal a
gaming console, an autonomous vehicle, a UAV, or any
other processing device. The client device 442 is shown to
include at least one programmable processor (central pro-
cessing unit, CPU) 448 and local memory 450. In some
embodiments, the various embodiments disclosed herein can
be modeled and implemented using software/firmware/hard-
ware executable by the client device. A connection to the
network 446 can be utilized but is not necessarily required.

The server 444 may be node connected to other devices
(not separately shown and may include an edge device, a
data processing center, a local network attached storage
device, the IPFS (InterPlanetary File System), a local service
provider (such as an on-demand cloud computing platform),

10

15

20

25

30

35

40

45

50

55

60

65

16

a software container, or any other form of remote storage
and/or processing device communicable to the client device
442 via the network. As such, the various embodiments or
portions thereof can be executed at the server level via server
CPU 452 and memory 454. The network 446 can be a local
area network, wired or wireless network, a private or public
cloud computing interconnection, the Internet, etc.

With regard to the operational environment in which the
various embodiments can operate, any number of options
are available including the following:

Supercomputers: the system can be implemented to run in
parallel (many instances of the algorithm running together
sharing information) on supercomputers.

GPUs: the system is amenable to being programmed into
a GPU. For example, GPUs commercially available from
Nvidia Corporation have a proprietary onboard program-
ming language referred to as “CUDA” in which various
embodiments can be written in and implemented in a
parallel fashion.

Multi-core processors: the system is adapted to be easily
executed in a multi-core processor. For example, different
cores can be assigned to different stages/sections to operate
in parallel.

Dedicated, custom designed hardware IC chips: the sys-
tem is readily implementable in hardware, and such systems
will likely be the fastest, by orders of magnitude over any
other alternative. For LLMs with billions of parameters, this
implementation will be particularly effective.
Parallelization

Parallelization is a particular feature of the various IGL-
ANN systems embodied herein. Parallelization can be
understood as computational processes that are run simul-
taneously on more than one thread/process/processor/CPU/
computer on a LAN/computer on the Internet, etc, in solving
a single problem simultaneously. Many processes that exist
are effective, but cannot be parallelized, or can only be
parallelized with much difficulty. Since it is ubiquitous that
multi-core processors and GPUs are widely available, the
most useful processes in modern environments are some-
times referred to as “embarrassingly parallel.”

The term embarrassingly parallel is a term of art which
refers to the ability of a computing process to be easily
divided into a number of independent parallel tasks, and
there is little or no effort required to separate the problem
and little or no dependency or communication between the
parallel tasks. An embarrassingly parallel process speeds up
substantially linearly as the process is executed on multiple
processors.

For example, having 10 processes running in parallel will
provide a 10x speed up (as opposed to a less desirable value
like 2.5% or 4x). GPUs, for example, can have thousands of
processor cores. A process that is embarrassingly parallel, or
close to embarrassingly parallel, is particularly suitable for
execution on a GPU.

The extent to which a process is embarrassingly parallel
is generally related to the so-called Amdahl’s Law, which
generally states that the overall performance improvement
gained by optimizing a single part of a system is limited by
the fraction of time that the improved part is used. Since the
IGL-ANN systems as variously embodied herein tend to
have less than 1% of the overall processing that cannot be
reduced, this means that over 99% of the IGL processing can
be parallelized, either at the process level or at the node level
(or both). This results in a highly desirable linear increase in
speed when implementing the optimization process using
multiple parallel processors.

US 12,242,946 Bl

17

One parallelization approach is generally represented by
system 460 in FIG. 19A, where an input control block 462
is coupled to N parallel processors 464. During the optimi-
zation training of a given IGL-ANN, one approach is to
apportion different sections of nodes in the array to each of
the N processors 464 and have the associated processor
optimize those nodes. The best values for the weights and
bias values (e.g., W1, W2, B, etc.) can be shared among the
processors as such become available. Because the chain
isolation optimization processing tends to only affect a
single chain of nodes, the existing values can be stored and
manipulated in memory, saving the need for multiple recal-
culations.

Another parallelization approach using the system of FIG.
19A would be to assign a different section (or channel) of an
IGL-ANN to each processor 464. For example, referring
again to the multi-channel system 400 in FIG. 15, each of the
different sections 402A-402D could be assigned for execu-
tion by a different processor 464 in FIG. 19A. In one
non-limiting example, a 16 core processor could be config-
ured to operate with 10 cores assigned to a different channel
for the respective digits 0-9 in an MNIST application, with
the remaining cores operating to support the training opera-
tion on the respective channels. Other configurations can be
used.

The required interprocessor data transfers are largely
trivial since relatively small amounts of numerical data are
involved, and could take place on each batch update. All of
the processes would communicate their final value for error
reduction at the end of each batch to an output control block
466, and the process with the best error reduction value
would communicate their current values for W1, W2, and B
for each node to the other processes, and the next batch
processing would commence.

This further demonstrates the advantages of providing the
system without the need for backpropagation, since paral-
lelization of backpropagation is difficult to implement. With
backpropagation, one would have perhaps exponentially
larger data transfers with larger networks, due to the
increased number of nodes and connections. Less memory is
required for each model, as well as the sum of the memory
for all the parallel models running together. Back propaga-
tion in parallel is going to require more memory for all the
parallel models, and this may become a bottleneck long
before processing speed for large models.

Further performance improvements may be available by
providing parallelization at a node level. Referring again to
the system 460 in FIG. 19A, each of the processors 464
could be assigned a single node in the IGL-ANN to process.
This type of parallelization can be understood more clearly
with a reference to FIG. 19B.

FIG. 19B shows another parallelization system 470 that
can be implemented in a large scale network environment.
The system is particularly suitable for exceptionally large
models. The exemplary diagram includes a memory space
472 in which multiple network sections 474 are trained to
detect different inputs. In this case, a total of 10 sections 474
are provided corresponding to the digits 0-9 from the
MNIST database, represented by input block 476. Other
configurations of networks can be constructed, however.

For example and not by way of limitation, the so-called
German Traffic Sign Recognition Benchmark (GTSRB) is
another well-known testing benchmark with approximately
40 different German road signs and approximately 50,000
images. To detect these signs, a total of approximately 40
different channels 474 could be implemented and trained,

20

25

35

40

45

60

65

18

one for each sign. Other configurations can be used includ-
ing non-image classification applications.

The sections 474 may be considered notional in that the
active portions of these sections may be loaded to and
operated in the memory space 472 (e.g., RAM or other
memory) as needed. It is not necessarily required that the
full node representation of the entirety of each section be
maintained in memory, but rather, only those nodes under-
going evaluation and training, as well as the affected down-
stream nodes (see FIG. 9).

Continuing with a review of FIG. 19B, element 478
represents a bus or central communication path to allow the
respective elements to communicate and transfer data. These
elements further include a processor core pool 480, which in
this case may comprise many thousands of processing cores
each available to carry out processing functions on indi-
vidual nodes. A scheduling manager 482 queues up the next
node for processing and assigns a core to the selected node,
so that multiple nodes are being evaluated in parallel.

The parameters and data values may be stored in a storage
array 484 having N SSDs 486 (and/or other forms of storage
and processing capabilities). The use of a storage array 484
allows the implementation of an overall network of substan-
tially any size to be efficiently handled and managed. While
arandom selection methodology may be carried out to select
nodes for training (as explained more fully below), the order
is determined by the scheduling manager 482, so that the
manager can direct the SSDs 486 to queue up the data for the
next node. The SSDs 484 can thus supply the necessary
existing node parameters (including history data) and store
updated values as the processing cores test and train each of
the nodes, without the inherent latency of the SSDs
adversely affecting the processing speed of the nodes.

FIGS. 18 and 19A-19B show that systems constructed
using the IGL-ANN sections described herein can be scaled
to substantially any desired size, including systems that have
thousands of layers (or more), millions of nodes (or more)
and billions of parameters (or more). Substantially any ANN
application, including but not limited to LLMs and genera-
tive Al systems, can be efliciently constructed and trained
with IGL-ANNSs using a fraction of the time and resources
required for existing ANN systems.

Enhanced Error Function

The various loss (error) functions described herein includ-
ing in the chain isolation optimization training are suitable
as a standard error model. These can be characterized as
generally operating along the following lines to calculate an
Error (E) as follows:

Error(E)=AbsoluteValue(Ypredicted-Ydesired) 3)

where the Error (E) is the value of the loss function to be
minimized, Ypredicted is the output of the ANN, and Yde-
sired is the target value which forms a portion of the test data
set. As will be appreciated, Ydesired will usually tend to be
either zero (0) or one (1), at least from a normalized
standpoint. More specifically, in view of the IGL-ANN
embodiments described herein, Ydesired will tend to either
be 0 or P.

An Enhanced Error Function (EFF) is disclosed herein
that can provide further improvements in convergence rates.
The EFF is configured to heavily penalize incorrectly clas-
sified predictions. The model was derived empirically, so the

US 12,242,946 Bl

19

following example is illustrative and not limiting. The EFF
can be characterized as operating as follows:

If Ydesired=0and Ypredicted is>=to(A)*Pthen Error
(E)=AbsoluteValue(Ypredicted-Ydesired)"(B)
Else Error(E)=AbsoluteValue(Ypredicted-Yde-

sired)*(C) “

where A, B and C are selected convergence constants used
to force convergence of the observed error. In one embodi-
ment, these constants may be set as follows:

A=0.49 B=1.2 C=0.01)

Other values for the constants A, B, and C can be used.
However, in this formulation it can be advantageous that A
be close to but less than 0.5, B be greater than 1, and C be
relatively small. It will be noted that the EFF significantly
penalizes “incorrect” classifications, since the threshold is at
0.5*%P, so anything less than 0.5*P will be considered a “0”
prediction, and anything greater than 0.5*P output from the
network will be considered a “1” prediction during testing.

Note the following if Ydesired=1:

If Ydesired=1 and Ypredicted is <=to (1-A)*P,then

Error(E)=AbsoluteValue(Ypredicted—Ydesired)

"B Else Error(E)=AbsoluteValue(Ypredicted—

Ydesired)*C (6)
where (in this case) 1-A=0.51, and B and C are set forth by
equation (5) as before. This EFF formulation has been found
to work effectively to “slam up” or “slam down” output
values to where they need to be to generate correctly
classified outputs.

Another EFF can be used to provide further improve-
ments and faster convergence of error during system train-
ing. In this related approach, an error forcing function is
used to drive oscillating but correctly classified errors
towards convergence (low penalty) and to amplify incor-
rectly classified errors (high penalty).

This alternative EFF sets initial constant values L and M
as:

L=0.4*P*0.01M=0.05*P*0.1 @

A Raw Error RE is determined as before, such as by:

RE=Absolute Value(Ypredicted-Ydesired) (8)

Thereafter, a Computed Error CE may be determined as
follows:

If RE is between O and 0.4*Pjthen CE=RE*0.01 If
RE is between 0.4*P and 0.45*Pthen CE=L+
((RE-(0.4*P))(0.1)) If RE is greater than 0.45*P
(up to P),then CE=(L+M)+((RE-(0.45*P))
(10))°1.2(9)

This alternative EFF function is represented by error
curve 490 in FIG. 20. The curve 490 is plotted against a Raw
Error (RE) x-axis and a Computed Error (CE) y-axis.
Segment 492 has a relatively low slope towards 0 and
extends for RE values of from 0 to 0.40. Segment 494 is a
shelf portion with a steeper slope for RE values between
0.40 and 0.45. Segment 496 is an exponential function for
values of RE greater than 0.45.

In this way, correct classifications are rewarded and
incorrect classifications are provided with an exponentially
greater penalty. The function tends to push oscillating clas-
sifications around the midpoint down the shelf 494 and into
the convergence zone of segment 492. It has been found
experimentally that the error function of curve 490 can
significantly correct prediction rates, reduce training times
and achieve higher overall success rates (including above
99% to 100%).

15

20

25

30

35

40

45

50

55

60

65

20

In sum, a calculated loss function error can be determined
using an EFF with one or more convergence constants to
accelerate convergence of the loss function error, such as the
constants defined by a first model via equations (4)-(6) or via
a second model via equations (7)-(9), as each set of node
parameters are adjusted during the chain isolation optimi-
zation process.

Intelligent Test Data Pruning (Culling)

In many training data sets, some percentage of all of the
input locations are always zero or some other null value.
These zero locations can include background areas and not
part of the depicted characters in the test data. For example,
the MNIST handwriting training data set uses test data
arranged in an array of MxN pixels (e.g., 28x28 pixels), and
in each case for all of the digits 0-9, about 20% of these
pixels are always zero. Usually, the border of 3-6 or more
pixels around the edge are zero, and many of the nodes have
X1 and X2 inputs from the data that can be identified as
always zero before training begins.

These zero inputs provide no useful information and
cannot reasonably contribute to effective learning. Hence,
further embodiments disclosed herein perform an initial
pruning (culling) operation to identify and eliminate those
pixels that are always zero. The ability of the IGL-ANN to
model logic gates provides a particularly useful capability in
performing this pruning operation, although other tech-
niques can be used as well.

In further embodiments, all of the nodes forward in the
chains that have all pruned inputs are also pruned out as well
and are not further examined or update. For example,
reference is made to the ALG-ANN discussed above in FIG.
11; those input nodes corresponding to always zero can be
ignored, set to zero, never updated in the evaluation
sequence, etc.

FIG. 21 provides a node pruning (culling) sequence 500
to illustrate this process. The flow in FIG. 21 is merely
exemplary and can be modified as required.

At block 502, null (e.g., zero) nodes are first identified in
the input data. This can include a combinatorial comparison
of all of the data sets on a pixel-by-pixel basis to ensure that
no useful information is provided in any of these locations.
Other techniques, including empirical or heuristic tech-
niques, may be employed.

As noted above, the null locations may tend to mostly
appear near the edges of the respective test samples in an
image classification system such as a MNIST handwriting
example, but other locations and types of data may similarly
have null data locations across the data set as well. For
example and not by way of limitation, the null locations all
have a value of 0 for an MNIST data set when gray-scale
intensity values of 0-255 are provided for the respective
images across the entirety of the data set.

Once the null locations are identified, the process contin-
ues at block 504 where the corresponding input nodes that
map to these locations are zeroed out. As noted above, in at
least most cases no useful information will be supplied to
these nodes, so turning these nodes off reduces the total
number of subsequent calculations that will be required
during training. The nodes may be pruned by setting the
respective parameters of these nodes to all zero. For
example, see the NULL entry in FIG. 7A which provides (B,
W1, W2) values of (0, 0, 0). Other approaches can be used.

A downstream search is next performed at block 506 to
trace each nulled out input node forward through the array
along each chain path to determine if any downstream nodes
have all inputs that are connected to upstream nulled out
nodes. If so, these downstream nodes are also pruned (e.g.,

US 12,242,946 Bl

21

set to (0, 0, 0)). Once all affected nodes have been identified
and pruned, the chain isolation optimization is applied to the
remaining nodes at block 508.

Significantly, a pruning operation such as set forth by
FIG. 21 is not typically available for, or easily implemented
by, systems that use conventional backpropagation tech-
niques. This is because, in a backpropagated MLP ANN,
substantially all the nodes in the forward direction are
connected to every node in the forward direction. Pruning
out a few input nodes will not make much difference,
because all of the forward nodes are still connected to valid
data in the previous layers one way or another and still need
to be examined.

By contrast, in an IGL-ANN, entire chains of nodes with
zero values can be pruned out. Some ML data sets have been
found to have upwards of 30%, 40% or even 50% (or more)
empty or zero nodes, so this optimization has shown to
account for further enhancements in the processing speed of
an IGL-ANN as compared to a conventional ANN.

In one example, empirical testing showed pruning rates of
around 18-20% for IGL-ANN networks configured for
MNIST processing are common. It is estimated based on
observed data that this type of pruning optimization tech-
nique may result in at least 10%, and upwards of around
50%, speed improvements for real-world data.

Batch Learning Scheduling

Another area that can provide enhanced chain isolation
optimization operation is referred to herein as a “Batch
Learning Scheduling” (BLS) mechanism. It is contemplated
that this technique will result in further speed error reduc-
tions and enable achievements of close to 100% accuracy in
training efforts.

At present, training examples in the ML environment are
often presented to the network undergoing training in a
randomized fashion. Empirical observation has suggested
that about 90% of the training examples are fairly easy for
the network to learn, about 8% require more intense training
but are achievable, and the remaining about 2% require
upwards of 10x to 100x (or more) the time and effort that
was required for all of the prior 98%. One illustrative
example in the MNIST data set for these problematic 2% is
a handwriting test sample where the numeral “1” is written
as a diagonally extending line rather than a vertically
extending line.

The proposed BLS technique accounts for training
examples that are identified as “difficult to learn” by a
combination of approaches. In one approach, a first pass at
training is carried out to identify difficult to learn examples.
These difficult examples can be identified as those that are
still incorrectly classified even after training, do not show
rapid convergence of loss function rate, or other observed
behavior of the system during evaluation.

A flag value can be attached to these difficult test samples,
and training can commence again (either continuing from
the present state or resetting the system). During this second
pass, the training is carried out as before, except that the
flagged examples are assigned priority and are presented
early and more often until they are correctly classified.

In a related approach, an overall training data set (such as
50,000 items or examples) is selected. For each of a number
of successive batches, a subset is randomly selected (such as
10,000 examples) and optimized. At the end of the batch,
those examples that continue to be mischaracterized are
inserted into the next randomly selected batch. This way, the
problem items are selected early and often, allowing the
training scheme to continue to process the difficult items
until the system correctly classifies them (if possible). Other

20

25

40

45

60

65

22

techniques can be used as well to intelligently select the
order and frequency of the presented training set.

FIG. 22 provides a batch learning scheduling sequence
510 to illustrate these processing operations in accordance
with some embodiments. As before, other approaches can be
used.

At block 512, a first pass of training is carried out across
an entirety of an input training set (such as the MNIST data
set described previously, although any training set can be
used). At block 514, a full or partial convergence is carried
out upon the loss function observed from this first pass at
block 512. A loosened error tolerance (e.g., 96% instead of
99%, etc.) can be used as desired.

The goal is to identify those samples from among the test
data that are presenting the most difficulty, from a relative
standpoint, in loss function convergence. In some cases, the
difficult samples can be selected using a priori techniques;
for example, it can be reasonably expected that “sloppy”
handwriting examples, such as malformed characters (e.g.,
diagonal “1s” etc.) may be identified immediately without
the need to obtain an output from the system.

A scheduling profile is next developed at block 516 that
advances the flagged samples, either or both in frequency
and in time, within the sequence. It is contemplated that
presenting the flagged samples some multiple times more
frequently within the test data set, such as 3X, 5X, 10X etc.,
can be particularly useful. These can be managed by physi-
cally duplicating the difficult samples so that more copies are
present in the test data, or by periodically inserting the
difficult samples more frequently than the other samples.

Similarly, advancing the samples so that the flagged
examples are presented earlier in the training process can
beneficially train the system early where large changes are
still being made to the various parameters. Any number of
mechanisms can be used to develop and implement the
scheduling profile, including the use of random number
generators (RNGs), tables, etc. Once the scheduling profile
is developed, the sequence continues at block 518 where a
second pass through the optimization routine is carried out
using the developed scheduling profile from block 516.

Empirical testing has demonstrated that batch learning
scheduling on the MNIST data set as represented by FIG. 22
provides significant reductions in training time and
enhanced classification success rates for all characters. As
noted above, purposefully adding incorrectly classified char-
acters during a given training batch to the next batch ensures
more frequent emphasis upon the difficult to classify
examples. BLS has benefit by itself or in combination with
the other optimization techniques disclosed herein.

Data Scaling

As will be recognized by those having skill in the art, a
metric sometimes referred to as “Big O Notation” describes
a metric for how mathematicians, computer scientists and
other related technologists compare algorithms in terms of
how much additional effort is required for larger problem
sizes (such as more data). Ideally, attempts are made to find
algorithms that scale linearly, or less than linearly, with
additional data. For example, for a slower algorithm it may
take 4x the processing time/power for a 2x increase in data
size, 16x for 4x the data, etc.

Some other algorithms require “factorial” scaling, where
n is the number of examples and the scale rate may be at n!
in terms of additional processing power/time required. A
more ideal algorithm would be one that scales at a lower rate
such as 2n, 1.5n or even n.

It follows that the various embodiments of IGL-ANNs
presented herein scale far more favorably in terms of Big O

US 12,242,946 Bl

23

Notation as compared to networks that utilize backpropa-
gation. This is because the number of required nodes/
connections increases significantly with increased data
inputs in a conventional system, whereas the IGL-ANNs
discussed herein provide a lower scaling rate such as 2n due
to the 2 input/1 output node model. As a result, the IGL-
ANN should be scalable for extremely large data sets with
significant improvements in test time/resources. In terms of
algorithmic performance, this may be a performance
enhancement improvement of the type that is rarely seen.
Fully Interconnected Layers

The 2-input 1-output architecture discussed so far, where
each layer combines two nodes from the previous layer in a
regularized row and column reduction methodology, is
highly desirable, especially for image recognition. This is
because in images, the neighboring pixel values are usually
related to each other, since the adjacent pixels represent part
of an associated object within the image.

Some input data may have neighboring values unrelated
to each other, such as classification data for medical patients
for a particular illness or condition. In these and other types
of data sets, every data set item may be related (or not) to
every other item in the data set.

To explore the relationships between non-adjacent pixels
in an input data set, further embodiments of IGL-ANN
sections can be implemented to include so-called fully
interconnected layers. Unlike the normally connected IGL-
ANN layers discussed above, a fully interconnected layer
has a node to accommodate every possible combination of
nodes in the previous layer (or at least a significant portion
of such combinations).

It will be appreciated that a fully interconnected layer will
result in an explosion in the number of respective connec-
tions within the IGL-ANN. Nonetheless, such interconnec-
tions may be useful for certain types of data and problems
of a certain complexity. This also shows the flexibility of the
IGL-ANN design since different architectures can be chosen
in addition to the highly performance oriented 2-to-1 layer
to layer node connection protocol.

FIG. 23A shows an example IGL-ANN 520, sometimes
referred to herein as a hybrid IGL-ANN, with input layer
522, one or more fully interconnected layers (FILs) 524, one
or more normally connected layers 526, and an output layer
528. The FILs 524 can be placed substantially anywhere
within the hybrid IGL-ANN 520, including immediately
adjacent the input or closer to the output.

It is contemplated that, in many cases, it may be advan-
tageous to place the FIL nearest to the input data, but for
performance reasons it may be advisable to move the FIL
farther up the architecture (e.g., Layer 4-5, etc.). Multiple
FILs can also be used, each having one or more normally
connected layers in between to reduce the impact (node
explosion) from multiple successive fully interconnected
layers. This flexibility will allow the system designer flex-
ibility in solving specific problems.

FIG. 23B shows a similar hybrid system 530 with FILs
including an upstream Layer N 532 and a downstream (D)
Layer N+1 534. In this simplified example, Layer N has a
total of 16 nodes 536 identified as Nodes 1-16. Layer N+1
534 has a total of 120 nodes 538 identified as Nodes
D1-D120.

The formula for determining the total number of nodes
DN in a downstream layer for an upstream layer with N
nodes can be stated as

DN=(N)(N-1)/2 (10)

20

40

60

65

24

In this case, N=16 so DN=120. It can be seen that, in order
to accommodate every combination of the 16 nodes 536 in
Layer N, Node 1 is connected to each of the remaining
Nodes 2-16; Node 2 is connected to each of the remaining
Nodes 3-16; and so on down to Node 15, which is connected
to Node 16 (for a total of 120 combinations/nodes).

Chain isolation optimization techniques as described
herein can still be used, with the caveat that optimizing the
parameters (B, W1, W2) for the interconnected nodes nec-
essarily requires a larger subset of nodes that will need to be
recalculated as well. For example, to assess a parametric
change to Node 1 in Layer N, the impacts upon each of the
DN nodes D1-15, as well as the chains of these nodes to the
output layer, will need to be calculated. Nonetheless, the
techniques can still be carried out significantly faster than
existing gradient descent based backpropagation.

Software Modeling and Visualization Tool

It will be appreciated based on the discussion thus far that
significant caching of values can take place during the
temporary adjustment of nodes in the various chains. In
some embodiments, each node in a given IGL-ANN section
has a data structure maintained in memory that includes
(among many other items) the following variables:

W l<—permanent value

W2<—permanent value

Bias <—permanent value

tWl<—temporary value for the node under investigation

tW2<—temporary value for the node under investigation

tBias <—temporary value for the node under investigation

y(1 to batch count)<—temporary y values for the nodes in

the “chain”

c_Y(1 to batch count)<—cached values to be restored if

necessary

Ytest <test output value

Other values may be stored for each node as well, and
multiple values for each of the above variables may be
accumulated. To provide a simplified example, a given
training data set may have 1000 examples. A batch size is
configured as a subset of the training data set (but the batch
size may be the same size as the training data set size).
Learning takes place on a batch basis as discussed above.

After a particular batch is completed, a new batch is
selected and more learning takes place. While a single pass
is carried out on each batch, in alternative embodiments,
multiple passes can be carried out on each batch. For
example, a batch of 100 training items (examples) might be
selected at random from the data set of 1000. Some dataset
items can appear twice, or more, or not at all.

Assuming a batch size of 100, training starts by calculat-
ing all the 100 y(1 to batch count) values (on each node)
based on feed forward through permanent W1, W2, and Bias
values, with the training data inputs for each respective
batch example (1 to 100). Each node has its own values for
y(1 to batch count), but the most important ones are the
values at the last node in the network, since those are the
overall predictions for each of the training items.

Once all the y(i) values (i here is “index” into the batch
set—1 to 100) are calculated for each node, then the
chaining can begin. A node is selected at random in the
network for evaluation. All of the nodes can be selected in
turn, but it has been determined that selecting only a small
percentage, such as 2%-5%, is sufficient. This is discussed
more fully below.

Each node has stored in memory its respective y(i) values
for each batch training example. For the random node that
is selected, the first step is to “cache” all of the y(i) output
values for itself and all the other nodes all the way up the

US 12,242,946 Bl

25

chain until the output node. That is what the ¢_Y(i) array
values allow. The “c” here stands for “cache”. In the
software module discussed below, a “copy memory” func-
tion which is extremely fast.

All of the existing values in y(i) for each node are
instantly copied to the ¢_Y(i) values. Then for the node
under investigation, the parameter values use temporary
values tW1, tW2, tBias which are adjusted in a set number
of attempts up to a maximum value. However, if a suffi-
ciently great enough error reduction is found, those values
are retained and the node processing exits. This could be
experienced during the first try, the last try, or at any point
in between. As noted above, some examples provide 35
different combinations of parameter values (e.g., all of the
various combinations in the table of FIG. 7A plus other
various combinations). It will be noted that the foregoing (up
to) 35 combinations are tried for each item in the batch.

If the node evaluation completes all of the passes without
error improvement, the cached values c_Y(i) are restored to
the Y (i) values along the chain. Assuming values for tW1,
tW2, and tBias were found that reduce the error, at that point
tW1, tW2, and tBias would be copied to W1, W2, and Bias,
respectively, and these would become the updated perma-
nent values. At this point another node would be chosen for
the chaining optimization techniques and the preceding steps
repeated for the new node.

In further embodiments, one method used to check for
error reductions is to pass up on the node under investiga-
tion, using tW1, tW2, and tBias. Note that only the node
under investigation uses the “t” values for tW1, tW2, tBias;
all the other nodes in the chain use the permanent W1, W2,
and Bias values. The values for y(i) can be passed up for
each node in the chain, for training example in the batch (i=1
to batch count), and the error is calculated for that respective
example at the output node.

The sum of all of the errors across the batch is the error
that is compared to the best previous error (from the prior
node). An attractive performance gain here is that if an error
reduction is found, the current values for y(i) simply stay in
place. If not, the cached values are a “memcopy” away on
each node to be restored along the chain all the way up to the
output node.

With regard to the random selection of nodes, since the
quantity of nodes varies tremendously by layer (for
example, Layer 1 may have 10,000 nodes, whereas Layer 21
may only have 16 nodes, etc.), a random selection function
can be used that weights the selection of nodes in relation to
the number of nodes in each layer. This can be accomplished
by calculating the cumulative percentages of each succes-
sive layer up to a maximum value of 1. If a random 0 to 1
selection is less than the threshold of the next layer up, that
layer is chosen. The respective node row and column can
just be randomly chosen from their maximum value multi-
plied by a random number O to 1. Other techniques can be
alternatively used. Regardless, the random selection of
nodes for evaluation will help ensure the node adjustments
tend to be spread out evenly across all of the nodes.

In another randomization approach, a list can be main-
tained of selected nodes such that previously selected nodes
are not selected again until all (or some selected percentage)
of other nodes in a given layer have been selected. Another
approach can be to flag a selected node that has been
adjusted, and to not make further adjustments to that node
after a certain total number of adjustments have been made
(including a single adjustment). Other mechanisms can be
used to ensure a full distribution of node evaluations take
place.

—_

0

—_

5

20

35

45

65

26

These and other aspects of the chain isolation optimiza-
tion training can be carried out using a software modeling
and visualization tool 540 constructed and operated in
accordance with some embodiments. The tool 540 repre-
sents software program instructions stored in a memory and
used to generate and train an IGL-ANN. Other mechanisms
can be used so the tool is merely exemplary and is not
limiting.

The tool 540 includes three main operational modules: a
modeling module 542, a controller module 544 and a viewer
module 546. The modeling module 542 generally operates
as a user interface and front end processor to set up a
network for training. To this end, the module 542 can
include a user interface I/F block 548, a parameter selection
and configuration (params) block 550, and a model genera-
tor 552.

While not limiting, in some embodiments a particular
IGL-ANN will be generated responsive to an analysis of the
input data set. To this end, external data, also stored in a
computer memory, can include an IGL-ANN node data set
554, a training data set 556 and a test data set 558. The block
554 represents the IGL-ANN itself (in software form) along
with the various temporary and other cached values
described above.

The training data set 556 can take any number of forms
(including but not limited to the aforementioned MNIST or
GTSRB data sets). The test data set 558 may also be related
to the training data, but represents pristine data that the
system has not yet seen. In other words, in some testing
schemes it is common to train a particular ANN using
training data, and then once training has been optimized,
present data that the system has never seen before to see how
the system performs.

Significantly, IGL-ANN sections configured and trained
as disclosed herein have tended to provide output test data
success rates that are higher than the final training data
success rates. That is, once a final error value has been
determined on the training data, the final error value for the
subsequently applied test data is better, not worse.

The controller 544 provides overall control of the system
during modeling, training and subsequent operation. To this
end, the controller 544 includes an analysis engine 560, a
scheduler 562 and a batch manager 564. The viewer module
546 reports the progress and results of the operation of the
IGL-ANN, including various optional graphical and heat
map based displays as well as more traditional reporting
functions. To this end, the viewer provides back end pro-
cessing capabilities including an operating system (OS) API
block 566 to call functionality supplied by a host OS as
required, a color manager 568 to assign and track various
color assignments as discussed below, and a display 570 to
provide output in a visible or other suitable form (e.g.,
database, etc.).

FIG. 25 is a revisited chain isolation optimization
sequence 580 to expand upon the prior discussion of chain
isolation optimization above, including that provided with
reference to FIGS. 9-10. The sequence 580 is contemplated
as being carried out using the tool 540 from FIG. 24, but
such is not necessarily required. For brevity, previously
discussed aspects will not be described again in detail.

It is contemplated albeit not necessarily required that the
routine operates to build, train and prepare for subsequent
use an IGL-ANN. To this end, block 582 commences by
identifying various requirements of the system, including
the nature, type and extent of the training data set (e.g., 566,
FIG. 24). Based on these and other parameters, an IGL-ANN
is initially constructed (in this case, in software). This will

US 12,242,946 Bl

27

include the number and sizes of the respective layers, the
interconnection strategy, the total number of nodes, whether
convolutional filters, fully interconnected node layers,
dummy nodes, etc. will be required, and so on. In some
cases, selection alternatives may be presented to the user via
the interface block 548 (FIG. 24) to make particular selec-
tions and adjustments to the model.

Using the MNIST data set as an example, it will be
recalled that the data set provides images for 10 different
characters in an 28x28 array of pixels for each character.
These factors may result in a 10 stage configuration to
separately detect each possible output (0-9), and some
number of input values in the first layer to select how the
scanning may take place (e.g., vertically, horizontally, etc.).
In some cases, the first layer may be selected to have
multiple sets of nodes that map the same input data (such as
a 4-quadrant arrangement) to further emphasize parallel
processing through the network.

As noted above, substantially any numbers of layers and
nodes per layer can be selected. By way of illustration,
commonly deployed models for the MNIST data set have
typically had from 10-14 layers in each section. The tool 540
can be configured in some embodiments to allow the
designer to specifically set the total number and set of layers,
or the system can do so automatically. Other arrangements
are suitable and can be used.

Further selections are made at block 586, including batch
size, percent (%) nodes to test during each batch, node
selection and distribution strategies, initial values for the
various nodes, as well as other parameters as required. As
noted above, one particularly useful approach is to take the
entirety of the MNIST data set (60,000 training images and
10,000 test images) and divide these so that 50,000 images
from the training data are used for batch runs and the
remaining 10,000 images are used as an intermediary test at
the end of every 107 batch (or some other value). The
10,000 test images are held in reserve and only used at the
end.

In this approach, a batch size of 10,000 randomly selected
images from the pool of 50,000 may be selected for each
batch, with flagged images (incorrectly characterized) dur-
ing a given batch fed forward and included in the next batch.
With regard to initialization, random parameters (B, W1,
B2) work well, but it has been found useful to instead set all
of the nodes with initial parameters corresponding to the
weighted sum setting (e.g., (1, 0.5, 0.5)).

As noted above, the total number of nodes to be tested
during each batch is selected. While all of the nodes can be
selected and evaluated in turn, it has been found that as few
as 2% of the nodes can provide rapid convergence in error
rate, with 4% being another particularly useful value in some
cases. It will be appreciated that evaluating and testing only
a relatively small subset of the overall node count greatly
accelerates the process.

Other parameters can include various error thresholds, the
type of error forced function processing desired (such as
EFF described above), the total number of batches to run,
etc. If parallel processing is applied, further assignments can
be made such as assigning each stage (character) to a
different processor core, etc. All of these and other system
configurations may be carried out via the user interface or
via other means.

At block 588, the first batch is selected and processed.
During such processing, for each of the 10,000 images
selected for that batch, a node is randomly selected at 590,
and a total of X various combinations (such as 35 combi-
nations) are applied to the selected node at block 592. Values

20

25

35

40

45

50

55

60

65

28

are updated for the nodes along the associated chain (see
e.g., FIG. 9) and if an improved set of parameters is located,
these are implemented (block 594). This processing is
carried out for the selected node for all of the images in the
batch, after which a new node is selected, the foregoing
processing is repeated, and this continues until the total
number of nodes (e.g., 4%, etc.) have been adjusted. At this
point, the 10,000 reserved training set images can be applied
to determine an updated Yout error value, and the next batch
is selected at block 596.

FIG. 26A shows a table for an exemplary IGL-ANN
configured using the tool 540 of FIG. 24 and the sequence
580 in FIG. 25 in some embodiments for the MNIST data
set. In this example, a 14-layer configuration was selected
with 12,587 nodes arranged as shown.

FIG. 26B is a graphical depiction 600 of ongoing
improvements in error rates during testing. These are
updated and available in real time during the training
process via the viewer module 546 in FIG. 24. Batch
numbers are represented along the horizontal axis (a total of
40 batches have been processed at this point), and error rates
are shown along logarithmic bounding vertical axes (ex-
pressed in raw numbers, not percentages).

Curve 602 represents the beginning error rate at the start
of each batch, and curve 604 represents the ending error rate.
The vertical distance between curves 602, 604 shows the
improvement during that particular batch processing. Curve
606 shows overall improvement at the end of every 10
batches. The system has demonstrated convergence to very
low error rates (98-99%) over a short interval (from a matter
of minutes to a couple of hours).

FIG. 26C is a graphical depiction 610 of the network from
FIG. 26A during operation. In this case, a (gray-scale) heat
map type display is shown for each of the 14 layers arrayed
from an input (evaluating an image of a *“1”). The intensity
of the output is normally represented in color in relation to
the magnitude of the respective output values (Y1) from the
associated nodes in each layer. The largely uniform density
of colors indicates the spread processing nature of the
evaluation. An advantage of the IGL-ANN sections as
described herein is that the internal states and operations of
the nodes can be displayed and monitored in real time (or
near-real time).

FIG. 27A is another graphical depiction 620 of another
AGL-ANN section configured using the tool 540 and
sequence 580 discussed above. As before, the network is
configured to process the MNIST data set. However, in this
case, only 10 layers and 819 nodes are used. While this
network is significantly smaller than the network discussed
in FIGS. 26A-26C, extremely fast conversion rates were
nonetheless observed.

Of particular interest is the fact that the representation 620
in FIG. 27A is the initialized network prior to training. The
darker pixels in the first five layers (Layers 1-5) represent
pruned nodes. This analysis may be initially carried out by
the tool 540 by analyzing the entire training set in relation
to the configured network and automatically pruning the
unnecessary nodes.

FIG. 27B is a corresponding graphical depiction 630 of
the same network from FIG. 27A at an intermediate stage of
the training process. This provides a heat map type display
with the respective nodes categorized by gate logic type.
That is, based on color intensity the various Boolean logic
functions of Table 7A are identified (as well as near-Boolean
nodes). A large percentage are unknown, meaning that the
respective parameters (B, W1, W2) do not easily map to any
of the parametric combinations in FIG. 7A.

US 12,242,946 Bl

29

This graphically enables the designer to monitor the
progress of the training process and determine the distribu-
tion and flow of the data through the layers. A grouping or
concentration of activity can provide useful insights into
subsequent designs with adjustments to address problem
areas.

FIGS. 28A and 28B show another graphical representa-
tion that can be made of the data from a selected IGL-ANN
during training and subsequent operation. FIG. 28A shows a
3D map of the parameter values (B, W1, W2) with the initial
settings prior to training, and FIG. 28B shows a correspond-
ing map of these values during training. The ranges for the
parameters are discussed above in FIG. 7 and associated
table. As noted previously, all of the nodes in the network are
set to initial values of W1=0, W2-0 and B=1 (NULL) in this
example (see FIG. 28). Other initialization states can be
used, including randomly assigned values.

System Integration

FIG. 29 is a functional block representation of a system
700 that can incorporate a fully trained IGL-ANN as
described above. The system 700 can take substantially any
desired form of ML based application including but not
limited to an autonomous vehicle (e.g., self-driving car,
autonomous UAV, robot, etc.), an LLM type system, a
text-to-speech (TTS) or speech-to-text (STT) system, a
generative Al system (text, audio, visual or other outputs), a
guidance system, a target identification and tracking system,
a monitoring and control system, a forecasting model, a
personal assistant type application, a consumer product, a
computer OS or application (app), and so on.

The system 700 includes a fully trained IGL-ANN 702
that may be realized in hardware, software, firmware or a
combination thereof and trained including as described
above. The IGL-ANN 702 can be configured to operate
responsive to inputs supplied from various sensors 704 as
well as other system configuration inputs 706. An output
control system 708 may use the outputs of the IGL-ANN
702 to provide various actions as required. A controller 710
provides top level control.

The IGL-ANN can be trained “in-place” (e.g., as part of
the overall system 700 using suitable training data) or
“pre-trained” and installed in production units. Continuous
or subsequent training modes can be enacted, as can periodic
updates of parameters in an efficient and effective manner.

CONCLUSION

The various embodiments as presented herein provide a
number of benefits over the existing art. A specially config-
ured IGL-ANN section can wholly eliminate the need for
backpropagation and other gradient based training
approaches. The use of chain isolation optimization tech-
niques allows the effects of parametric adjustments to a
single node be quickly evaluated with regard to the effect on
the overall loss function of the network.

The specially configured LLO activation function, which
may be non-differentiable, provides significant flexibility in
modeling various Boolean functions, including difficult to
model functions such as XOR, NAND. NOR, etc. as well as
analog near-Boolean functions. The elimination of the need
for floating gate calculations and precision selection further
reduce or eliminate the risk of vanishing gradients and
saturation during the training process. It has been found that
the various embodiments can provide superior performance
to designs of the existing art both in terms of performance
(in some cases, many orders of magnitude faster) and cost.

20

25

40

45

60

65

30

It is to be understood that even though numerous char-
acteristics and advantages of various embodiments of the
present disclosure have been set forth in the foregoing
description, together with details of the structure and func-
tion of various embodiments of the disclosure, this detailed
description is illustrative only, and changes may be made in
detail, especially in matters of structure and arrangements of
parts within the principles of the present disclosure to the
full extent indicated by the broad general meaning of the
terms in which the appended claims are expressed.

What is claimed is:

1. An apparatus comprising a computer circuit having a
memory in which an Artificial Neural Network (ANN)
section is stored, the ANN section comprising a plurality of
nodes respectively arranged into an input layer, an output
layer, and at least one hidden layer interconnected between
the respective input and output layers, each node in the ANN
section having multiple inputs, a single output, and a non-
differentiable activation function configured to emulate one
or more Boolean logic functions responsive to a magnitude
of the multiple inputs and at least one weight value,

wherein a selected node from the plurality of nodes in the

input layer and the at least one hidden layer has the
single output thereof connected to a total of one other
node in a downstream layer to facilitate training of the
at least one weight value of the selected node using a
chain isolation optimization process without back-
propagation,

wherein a total of one active chain path extends through

the ANN from the selected node to each node in the
output layer, and

wherein the chain isolation optimization process com-

prises adjusting the at least one weight value of the
selected node and recalculating output values for each
downstream node along the active chain path to deter-
mine a change in an output error from the output layer.

2. The apparatus of claim 1, wherein each non-input layer
node has a total of two inputs, each of the two inputs
connected to a total of one other node in an upstream layer.

3. The apparatus of claim 1, wherein the selected node is
a first selected node in a selected layer having an overall
population of nodes, wherein the first selected node is
randomly selected from among the overall population of
nodes for training using a first pass of the chain isolation
optimization process to arrive at a first set of adjusted
parameters for the first selected node that provides a first
reduced output error value, and wherein a different, second
selected node in the selected layer is subsequently randomly
selected from among the overall population of nodes for
training using a second pass of the chain isolation optimi-
zation process to arrive at a second set of adjusted param-
eters for the second node that provides a second reduced
output error value lower than the first reduced output error
value.

4. The apparatus of claim 3, wherein a subset of selected
nodes from the selected layer are sequentially randomly
selected for training in turn to provide a final reduced output
error value for the ANN section, the subset of selected nodes
constituting 5% or less of the overall population of nodes in
the selected layer.

5. The apparatus of claim 1, wherein the single output of
each node is characterized as Y where Y ranges from a
minimum value 0 to a maximum value P where P is a
positive integer, and the non-differentiable activation func-
tion operates upon a weighted sum (WS) of the multiple

US 12,242,946 Bl

31

inputs and the at least one weight value to generate Y
responsive to the following relations:

if WS is less than zero (0), then Y is zero;

if WS is between 0 and P, Y is equal to WS;

if WS is between P and 2P, Y is determined in relation to

a difference between WS and P;

if WS is between 2P and 3P, Y is determined in relation

to a difference between WS and 2P; and

if WS is greater than 3P, Y is equal to P.

6. The apparatus of claim 1, wherein each selected node
combines input values from the multiple inputs using weight
values for each input value, a bias value and a global
precision value P selected in relation to a desired precision
between a minimum value and a maximum value to generate
a weighted sum (WS), and wherein the non-differentiable
activation function operates upon the WS to generate an
associated output Y by the selected node where Y is a
positive integer value from O to P.

7. The apparatus of claim 1, wherein the ANN section
further comprises a convolutional filter layer disposed
between the input layer and a selected one of the at least one
hidden layers.

8. The apparatus of claim 1, wherein the ANN section
further comprises a fully interconnected layer (FIL) dis-
posed between the input layer and a selected one of the at
least one hidden layers.

9. The apparatus of claim 1, wherein the non-differen-
tiable activation function is configured to model each of the
following Boolean logic functions responsive to different
magnitudes of the at least one weight value: NOR, XA, XB,
AND, NOTB, XOR, B, NOTA, A, NXOR, NAND, OR,
NXA, NXB, NULL, and ALL.

10. The apparatus of claim 1, wherein each selected node
combines input values from the multiple inputs using weight
values for each input value, a bias value and a global
precision value selected in relation to a desired precision
between a minimum value and a maximum value of the
single output for the selected node.

11. The apparatus of claim 10, wherein the desired pre-
cision value is characterized as a positive integer P, each of
the input values ranges in magnitude from 0 to P, each of the
weight values range in magnitude from -2P to +2P, the bias
value ranges in magnitude from -1P to +3P, and the output
of the selected node ranges in magnitude from O to P.

12. The apparatus of claim 1, wherein the chain isolation
optimization process comprises identifying a selected node,
detecting changes in an output error at an output node
coupled to the selected node responsive to each of a different
combination of parametric values applied to the selected
node, and calculating updated output values for each of a
sequence of downstream nodes coupled along a chain path
from the selected node to the output node using the output
from the selected node and previously stored outputs from
other nodes in the ANN section.

13. The apparatus of claim 1, wherein the computer circuit
comprises at least one programmable processor, the memory
is a computer storage memory utilized by the at least one
programmable processor, and the ANN section is realized in
software in the computer storage memory.

14. The apparatus of claim 1, wherein the computer circuit
comprises one or more application specific integrated circuit
(ASIC) devices.

15. A method comprising:

configuring an Artificial Neural Network (ANN) section

as a plurality of nodes respectively arranged into an
input layer, an output layer, and at least one hidden
layer interconnected between the respective input and

20

25

40

45

60

65

32

output layers, each node in the ANN section having
multiple inputs, a single output, and a non-differen-
tiable activation function configured to emulate one or
more Boolean logic functions responsive to a magni-
tude of the multiple inputs and a set of parametric
values; and
training the ANN section using a chain isolation optimi-
zation process comprising identifying a selected node,
detecting changes in an output error at an output node
coupled to the selected node responsive to each of a
different combination of the parametric values applied
to the selected node, and calculating updated output
values for each of a sequence of downstream nodes
coupled along a chain path from the selected node to
the output node using the output from the selected node
and previously stored outputs from other nodes in the
ANN section,

wherein a total of one active chain path extends through
the ANN from each selected node to each node in the
output laver, and wherein the chain isolation optimiza-
tion process further comprises adjusting the at least one
weight value of the selected node and recalculating
output values for each downstream node along the
active chain path to determine a change in an output
error from the output layer.

16. The method of claim 15, wherein the training step
comprises successively applying a batch of training data
examples to the input layer and determining an output error
from the output layer for each of the training data examples
responsive to a difference between a desired output and an
actual output, the output error determined using cached
values from each of the other nodes in the ANN section.

17. The method of claim 15, wherein the training step
further comprises a prior pruning operation upon nodes in
the input layer for locations associated with null locations
across the training data examples.

18. The method of claim 15, wherein each non-input layer
node has a total of two inputs, each of the two inputs
connected to a total of one other node in an upstream layer.

19. The method of claim 15, wherein the selected node is
a first selected node in a selected layer having an overall
population of nodes, wherein the first selected node is
randomly selected from among the overall population of
nodes for training using a first pass of the chain isolation
optimization process to arrive at a first set of adjusted
parameters for the first selected node that provides a first
reduced output error value, and wherein a different, second
selected node in the selected layer is subsequently randomly
selected from among the overall population of nodes for
training using a second pass of the chain isolation optimi-
zation process to arrive at a second set of adjusted param-
eters for the second node that provides a second reduced
output error value lower than the first reduced output error
value.

20. The method of claim 15, wherein the non-differen-
tiable activation function has at least one local minimum
disposed between an adjacent pair of local maximums.

21. The method of claim 15, wherein each selected node
combines input values from the multiple inputs using weight
values for each input value, a bias value and a global
precision value P selected in relation to a desired precision
between a minimum value and a maximum value to generate
a weighted sum (WS), and wherein the non-differentiable
activation function operates upon the WS to generate an
associated output Y by the selected node, where Y is a
positive integer in a range of from O to P.

US 12,242,946 Bl

33

22. The method of claim 21, wherein the training step
comprises generating an output error value for the ANN
section in relation to a difference between a predicted output
value and a desired output value using an error forcing
function that amplifies the output error value responsive to
a magnitude of the difference exceeding a predetermined
threshold.
23. The method of claim 15, wherein the set of parametric
values for each node are randomized prior to the training
step.
24. The method of claim 15, wherein the training step
further comprises flagging examples in the test data set that
exhibit misclassification error above a selected threshold
during a first pass, and advances both occurrence and
frequency of the flagged test values during a subsequent
second pass.
25. A method comprising:
configuring an Artificial Neural Network (ANN) section
as a plurality of nodes respectively arranged into an
input layer, an output layer, and at least one hidden
layer interconnected between the respective input and
output layers, each node in the ANN section having
multiple inputs, a single output, and a non-differen-
tiable activation function configured to emulate one or
more Boolean logic functions responsive to a magni-
tude of the multiple inputs and a set of parametric
values; and
training the ANN section using a chain isolation optimi-
zation process comprising identifying a selected node,
detecting changes in an output error at an output node
coupled to the selected node responsive to each of a
different combination of the parametric values applied
to the selected node, and calculating updated output
values for each of a sequence of downstream nodes
coupled along a chain path from the selected node to
the output node using the output from the selected node
and previously stored outputs from other nodes in the
ANN section;

wherein each selected node combines input values from
the multiple inputs using weight values for each input
value, a bias value and a global precision value selected
in relation to a desired precision between a minimum
value and a maximum value to generate a weighted
sum (WS), and wherein the non-differentiable activa-
tion function operates upon the WS to generate an
associated output by the selected node; and

wherein the global precision value is characterized as a

positive integer P, each of the input values ranges in
magnitude from O to P, each of the weight values range
in magnitude from —-2P to +2P, the bias value ranges in
magnitude from -1P to +3P, and the output of the
selected node ranges in magnitude from O to P.

26. The method of claim 25, wherein the training step
comprises generating an output error value for the ANN

20

25

35

40

45

34

section in relation to a difference between a predicted output
value and a desired output value using an error forcing
function that amplifies the output error value responsive to
a magnitude of the difference exceeding a predetermined
threshold.
27. An apparatus comprising a computer circuit having a
memory in which an Artificial Neural Network (ANN)
section is stored, the ANN section comprising a plurality of
nodes respectively arranged into an input layer, an output
layer, and at least one hidden layer interconnected between
the respective input and output layers, each node in the ANN
section having multiple inputs, a single output, and a non-
differentiable activation function configured to emulate one
or more Boolean logic functions responsive to a magnitude
of the multiple inputs and at least one weight value,
wherein a selected node from the plurality of nodes in the
input layer and the at least one hidden layer has the
single output thereof connected to a total of one other
node in a downstream layer to facilitate training of the
at least one weight value of the selected node using a
chain isolation optimization process without back-
propagation,
wherein the chain isolation optimization process com-
prises detecting changes in an output error at an output
node coupled to the selected node responsive to each of
a different combination of parametric values applied to
the selected node, and calculating updated output val-
ues for each of a sequence of downstream nodes
coupled along a chain path from the selected node to
the output node using the output from the selected node
and previously stored outputs from other nodes in the
ANN section,

wherein a total of one active chain path extends through
the ANN from the selected node to each node in the
output layer, and

wherein the chain isolation optimization process com-

prises adjusting the at least one weight value of the
selected node and recalculating output values for each
downstream node along the active chain path to deter-
mine a change in an output error from the output layer.

28. The apparatus of claim 27, wherein the ANN section
forms a portion of a large language model (LLM), a gen-
erative Al system, or an image classification system.

29. The apparatus of claim 27, wherein at least one
non-output layer of the ANN section is characterized as a
convolutional layer or a fully interconnected layer, and
wherein the nodes in all remaining non-output layers in the
ANN section each have a single output connected to a single
downstream node.

30. The apparatus of claim 27, wherein the computer
circuit is characterized as at least one graphical processing
unit (GPU) having a plurality of programmable processors
that operate in parallel.

* * * * *

