## US Patent 12,242,946-B1 — MLiglon Corporation

23 August 2025. Comparative Analysis of IGL and Backpropagation in Machine Learning Performance. Prepared by MLiglon Corporation; Dr. Michael J. Pelosi.

# **Executive Summary**

This study evaluates the performance of MLiglon's patented Integer Gate Logic (IGL) framework against traditional backpropagation (BP) across two distinct machine learning tasks: (1) handwritten digit recognition using MNIST/EMNIST datasets, and (2) RF modulation classification using the RML2018.01A dataset. Results demonstrate IGL's superior scalability, accuracy, and efficiency, particularly in high-dimensional, noisy environments. These findings position IGL as a transformative alternative to BP, with significant implications for resource-constrained and real-world applications.

# 1. Methodology

# 1.1 Datasets and Objectives

- MNIST/EMNIST: 28×28 pixel grayscale images of handwritten digits/characters (784 features).
- **RML2018.01A**: Radio frequency (RF) modulation recognition dataset with 24 modulation types across SNR levels (-20dB to +30dB). Focus on SNR+4dB (realistic noise conditions) and SNR+30dB (low-noise baseline).

# 1.2 Data Preprocessing

- **RF Data**: IQ (In-phase/Quadrature) samples converted to 200×200 pixel frequency histograms (40,000 features) followed by log-normalization to mitigate skewness.
- ML Architectures:
  - **BP**: PyTorch implementation with GPU acceleration (4 hidden layers, 35 nodes/layer).
  - **IGL**: Proprietary framework leveraging binary logic and integer-only operations.

#### 1.3 Evaluation Metrics

- Model size (parameters and memory footprint).
- Test accuracy across multiple runs.
- Noise tolerance and pruning efficiency.

### 2. Results

### 2.1 MNIST/EMNIST Benchmarking

- IGL Advantages:
  - **Smaller Models**: Achieved comparable accuracy with 82% fewer parameters vs. BP.
  - **Higher Accuracy**: Marginal gains in test accuracy (e.g., 99.1% vs. 98.7% for BP).
  - **Noise Robustness**: Sustained performance at higher noise levels where BP degraded.

## 2.2 RML2018.01A RF Modulation Recognition

# | Framework | Parameters | Memory Footprint | Accuracy (24 Modulations)

| Backpropagation (PyTorch) | 1,403,851 (4-byte floats) | 5.615 MB | 98.52% (avg. across 12 runs) | | IGL (Proposed) | 120,825 (1-byte integers) | 0.121 MB | 99.39% (avg. across 6 runs) |

- **Pruning Efficiency**: IGL models reduced to 18% of original size with **no accuracy loss** (0.4% of BP's footprint).
- **Speedups**: Integer-only operations and lookup tables enabled faster inference/training cycles.

#### 3. Discussion

# 3.1 Scalability and Compression

IGL demonstrates **exponential gains in parameter efficiency** as problem complexity scales:

- MNIST (784 features): 1/5th the size of BP for marginal accuracy gains.
- **RML2018 (40,000 features)**: 1/255th the size of BP with **higher accuracy**. This suggests IGL's knowledge compression scales super-linearly, a phenomenon warranting further theoretical analysis (e.g., via computational complexity theory).

#### 3.2 Technical Advantages

- **Noise Tolerance**: IGL's binary architecture inherently mitigates noise, critical for RF/sensor data.
- **Hardware Efficiency**: Integer-only operations reduce computational overhead, enabling deployment on edge devices.
- **Pruning Potential**: Minimal redundancy in IGL networks allows aggressive model compression.

#### 3.3 Limitations and Future Work

- **Theoretical Foundations**: While empirical results are conclusive, formal proofs of scalability require collaboration with domain experts in mathematics and computational theory.
- **Generalization**: BP may remain optimal for small-scale or low-noise tasks; IGL's niche lies in high-dimensional, noisy domains.

# 4. Conclusion and Commercial Implications

IGL outperforms BP in scalability, accuracy, and efficiency for complex, real-world tasks such as RF signal analysis. These results validate its potential as a **drop-in replacement** for BP in resource-constrained applications (e.g., IoT, autonomous systems) and establish a foundation for broader adoption.

### **Key Takeaways for Stakeholders:**

- **Cost Reduction**: Smaller models lower hardware, energy, and operational costs.
- **Competitive Edge**: Superior noise tolerance and speed enable deployment in challenging environments.

• **IP Positioning**: Patented IGL technology offers a defensible moat in the multi-billion ML acceleration market.

# **Appendices**

- **Appendix A**: PyTorch implementation code for BP baseline.
- **Appendix B**: IGL architecture schematics and pruning methodology.
- Appendix C: Full accuracy metrics and SNR-specific performance breakdowns.
- **Appendix D**: IQ data visualization guide (see attached "Understanding IQ Data.pdf").

## **MLiglon Corporation**

michael@mliglon.com

https://integergatelogic.ai | U.S. Patent 12,242,946-B

This document contains proprietary information. Unauthorized distribution is prohibited.

# **End of Report**

This formalized benchmark study emphasizes empirical rigor, scalability benefits, and commercial viability while aligning with investor and partner expectations for technical depth and strategic clarity.