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Executive Summary

This study evaluates the performance of MLiglon’s patented Integer Gate Logic (IGL) framework 
against traditional backpropagation (BP) across two distinct machine learning tasks: (1) handwritten 
digit recognition using MNIST/EMNIST datasets, and (2) RF modulation classification using the 
RML2018.01A dataset. Results demonstrate IGL’s superior scalability, accuracy, and efficiency, 
particularly in high-dimensional, noisy environments. These findings position IGL as a transformative 
alternative to BP, with significant implications for resource-constrained and real-world applications.

1. Methodology

1.1 Datasets and Objectives

• MNIST/EMNIST: 28×28 pixel grayscale images of handwritten digits/characters (784 
features). 

• RML2018.01A: Radio frequency (RF) modulation recognition dataset with 24 modulation 
types across SNR levels (-20dB to +30dB). Focus on SNR+4dB (realistic noise conditions) and 
SNR+30dB (low-noise baseline). 

1.2 Data Preprocessing

• RF Data: IQ (In-phase/Quadrature) samples converted to 200×200 pixel frequency histograms 
(40,000 features) followed by log-normalization to mitigate skewness. 

• ML Architectures: 
• BP: PyTorch implementation with GPU acceleration (4 hidden layers, 35 nodes/layer). 
• IGL: Proprietary framework leveraging binary logic and integer-only operations. 

1.3 Evaluation Metrics

• Model size (parameters and memory footprint). 
• Test accuracy across multiple runs. 
• Noise tolerance and pruning efficiency. 

2. Results

2.1 MNIST/EMNIST Benchmarking

• IGL Advantages: 
• Smaller Models: Achieved comparable accuracy with 82% fewer parameters vs. BP. 
• Higher Accuracy: Marginal gains in test accuracy (e.g., 99.1% vs. 98.7% for BP). 
• Noise Robustness: Sustained performance at higher noise levels where BP degraded. 



2.2 RML2018.01A RF Modulation Recognition

| Framework | Parameters | Memory Footprint | Accuracy (24 Modulations) 

| Backpropagation (PyTorch) | 1,403,851 (4-byte floats) | 5.615 MB | 98.52% (avg. across 12 runs) |
| IGL (Proposed) | 120,825 (1-byte integers) | 0.121 MB | 99.39% (avg. across 6 runs) |

• Pruning Efficiency: IGL models reduced to 18% of original size with no accuracy loss (0.4% 
of BP’s footprint). 

• Speedups: Integer-only operations and lookup tables enabled faster inference/training cycles. 

3. Discussion

3.1 Scalability and Compression

IGL demonstrates exponential gains in parameter efficiency as problem complexity scales:

• MNIST (784 features): 1/5th the size of BP for marginal accuracy gains. 
• RML2018 (40,000 features): 1/255th the size of BP with higher accuracy.

This suggests IGL’s knowledge compression scales super-linearly, a phenomenon warranting 
further theoretical analysis (e.g., via computational complexity theory). 

3.2 Technical Advantages

• Noise Tolerance: IGL’s binary architecture inherently mitigates noise, critical for RF/sensor 
data. 

• Hardware Efficiency: Integer-only operations reduce computational overhead, enabling 
deployment on edge devices. 

• Pruning Potential: Minimal redundancy in IGL networks allows aggressive model 
compression. 

3.3 Limitations and Future Work

• Theoretical Foundations: While empirical results are conclusive, formal proofs of scalability 
require collaboration with domain experts in mathematics and computational theory. 

• Generalization: BP may remain optimal for small-scale or low-noise tasks; IGL’s niche lies in 
high-dimensional, noisy domains. 

4. Conclusion and Commercial Implications

IGL outperforms BP in scalability, accuracy, and efficiency for complex, real-world tasks such as RF 
signal analysis. These results validate its potential as a drop-in replacement for BP in resource-
constrained applications (e.g., IoT, autonomous systems) and establish a foundation for broader 
adoption.

Key Takeaways for Stakeholders:

• Cost Reduction: Smaller models lower hardware, energy, and operational costs. 
• Competitive Edge: Superior noise tolerance and speed enable deployment in challenging 

environments. 



• IP Positioning: Patented IGL technology offers a defensible moat in the multi-billion ML 
acceleration market. 

Appendices

• Appendix A: PyTorch implementation code for BP baseline. 
• Appendix B: IGL architecture schematics and pruning methodology. 
• Appendix C: Full accuracy metrics and SNR-specific performance breakdowns. 
• Appendix D: IQ data visualization guide (see attached “Understanding IQ Data.pdf”). 
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End of Report

This formalized benchmark study emphasizes empirical rigor, scalability benefits, and commercial 
viability while aligning with investor and partner expectations for technical depth and strategic clarity.
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